
AD-A271 489

Technology and Applications Programs

Time Warp Operating System Version 2.7
Internals Manual

OST 2 7 1993

AU

I February 1992

Prepared for

U.S. Army Model Improvement and Study Management Agency
U.S. Army Concepts Analysis Agency

Through an Agreement with
I National Aeronautics and Space Administration

by

JPL
Jet Propulsion Laboratory

* ICalifornia Institute of Technology
I- Pasadena, California *93-25933,

1 93 1. - '.-

JPL D-9516

Technology and Applications Programs

Time Warp Operating System Version 2.7
i Internals Manual
U

I February 1992-...-

Prepared for

U.S. Army Model Improvement and Study Management Agency i
m ~ ~U.S. Army Concepts Analysis Agency

Through an Agreement with t1I
National Aeronautics and Space Administration /i

I/by

S JIPL
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CaliforniaU

I

II

U

II

I
U
I
I
I
U

The research described in this publication was carried out by the jet
Propulsion Laboratory, California Institute of Technology, and was sponsored
by the United States Army Model Improvement and Study Management
Agency and the Concepts Analysis Agency through an agreement with the
National Aeronautics and Space Administration, under contract NAS7-918. 3
Reference herein to any specific commercial product, process, or service by
trade name, trademar|, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government, United States Army
Model Improvement and Study Management Agency, the United States
Army Concepts Analysis Agency, or the Jet Propulsion Laboratory, California
Institute of Technology.

U
ii U

I
I

PREFACEI
This manual describes internal details of the Jet Propulsion Laboratory (JPL)
implementation of the Time Warp Operating System (TWOS) version 2.7. It
is meant to complement the TWOS User's- Manual, JPL document number D-
6493 Rev. C.

I This manual is meant for the use of those trying to understand the internal
workings of TWOS. Users of TWOS should generally consult the TWOS
User's Manual, instead. This manual is not meant to serve as a C language
tutorial, nor as an introduction to UNIX systems, nor as a manual for the
BBN GP1000 parallel processor or Sun workstations. The manual is written
assuming that its readers have a working knowledge of and familiarity with
the basics of computer programming; with bask. systems programming and
data structures; with the C programming language; and with the hardware on
which they intend to run TWOS. This manual is not meant to serve as an
introduction to parallel programming, systems programming, or operating
systems.

The Time Warp Group at JPL would appreciate any questions, comments, and
suggestions, Send all correspondence to:

Time Warp Operating System
High Performance Computing Group
Mail Stop 525-3660
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Il

U

Trademarks i

GP-1000 is a trademark of BBN Advanced Computers, Incorporated.

Excel is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T Bell Laboratories.

Ethernet is a trademark of the Xerox Corporation. 3
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc. 3

VU

I
U
i
U
U
U
I
I
I
I
I

iv U

1. O verall System Structure ... 1
1.1. Introduction .. 1
1.2 The Base O S .. 3
1.3 Standard O S Services ... 4
1.4. Basic TW ... 6
1.5. Special Services ... 8
1.6. The Tester ... 8

2. Basic TW O S D ata Structures ... 11
2.1. O bject C ontrol Blocks ... 12

2.1.1. Objects, Phases, and Processes ... 13
2.2. States .. 14
2.3. M essages .. 16
2.4. V irtual Tim es ... 17

3. Sending and Receiving TWOS Messages ... 19
4. Event Scheduling ... 25
5. Rollback ... 29
6. M essage C ancellation .. 35
7. Global Virtual Time Computation ... 41
8. C om m itm ent ... 47
9. D ynam ic M em ory ... 51
10. M essage Sendback ... 61
11. Dynamic Load Management .. 67
12. Tem poral D ecom position 73
13. Phase M igration 81
14. Dynamic Creation and Destruction of Objects .. 97
15. Throttling C ode ... 103
16. Critical Path C om putation .. 107
17. Phase Location ... 113
18. The Tester ... 121
19. Event Logging .. 125
20. I/O .. 127
21. The M ain Loop of TW O S .. 131
22. Statistics ... 137
23. Q ueue H andling ... 143
24. D ebugging Facilities Internals .. 147

24.1. Paranoid C ode ... 147
24.2. The M onitor .. 147
24.3. Flow Logging and Fplot .. 149
24.4. M essage Logging and M plot .. 150
24.5. The M igration Log ... I 150

Appendix A. The Sequential "'imulator's Internals .. 153
A ppendix B. Benchm arking TW O S ... 161
Appendix C. A Sample TWOS Benchmark Result ... 165

C 1. Introduction .. 165
C 2. The Benchm arking Process .. 165
C3 W arpnet Results .. 165

I

C4. STB88 Results 166
C5. Pucks Results ... 167
C6. Comparisons With Earlier Benchmarks ... 168
C7. Conclusions ... 168
C8. Charts and Raw Data ... 168

A ppendix D . TW O S O verhead Tim es .. 181
D 1. Introduction .. 181 U
D 2. State Saving Tim e .. 181
D3. M essage Sending O verheads ... 182
D4. Rollback O verhead .. 183
D5. Per Event O verhead .. 183
D6. Lazy Cancellation O verhead .. 184
D7. C onclusions ... 185 i

A ppendix E. TW OS Tools Internals ... 187
El. check/m easure Intern als .. 187
E2. collapse Internals .. 189

Appendix F. Unimplemented TWOS Features ... 193
Fl. Event Cancellation ... 193

F1.1. Introduction .. 193
F1.1.1. TWOS Message Sending Review 193

F1.2. unschedule() ... 194
F1.2.1. Basic unscliedule () Internals 195

F1.3. cancel() ... 196
F1.3.1. U nique Identifiers .. 198 3
F1.3.2. Basic cancel () Internals .. 200
F1.3.3. Cancellation and Message Priority 202

Fl.4. Commitment, Statistics, and Other Issues 203 3
F2. Event Prediction Design .. 204

F2.1. Introduction .. 204
F2.2. Review of the Prediction Mechanism 205 3
F2.3. Basic predict () Internals .. 205
F2.4. Unique Identifiers, Statistics, Migration, and Other
Issues ... 207 U

Appendix G. GP-1000/Mach Specific Internals ... 209
G 1. Tim e W arp Context Sw itching ... 209

G 1.1. General Principles ... 209
G 1.2. The Sw itch Routine ... 209
G 1.3. Flow of Control ... 210

A ppendix H . Tester Com m ands .. 213
Appendix I. Transputer Implementation Details .. 225
Bibliography .. 227 .i

I
U
U

Chapter 1: Overall System Structure

1.1 Introduction

The Time Warp Operating System (TWOS) is an implementation of the Time
Warp synchronization method proposed by David Jefferson. In addition, it
serves as an actual platform for running discrete event simulations. The code
comprising TWOS can be divided into several different sections.

Figure 1 graphically describes the Time Warp Operating System. Starting
from the center of the figure and working out, at the very core of the system is
another operating system. TWOS typically relies on an existing operating
system to furnish some very basic services. This existing operating system is
referred to as the Base OS in figure 1-1. The existing operating system varies
depending on the hardware TWOS is running on. It is Unix on the Sun
workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3
Hypercube. The base OS could be an entirely new operating system, written to
meet the special needs of TWOS, but, to this point, existing systems have been
used, instead. The base OS's used for TWOS on various platforms are not
discussed in detail in this manual, as they are well covered in their own
manuals. Appendix G discusses the interface between one such OS, Mach, and
TWOS.

The next layer out is the Standard OS Services layer. This layer of code
provides certain services to TWOS that are common to most operating
systems. They include context switching, simple memory management,
queueing primitives, fast copy routines, object location, and interrupt
handling. These services could usually be provided by the underlying
operating system in the Base OS layer, but TWOS needs to have them
performed in a somewhat different way than most systems. Therefore, they
are implemented in a manner suitable for TWOS. The TWOS code
providing these services is discussed in Chapters 17-24 of this manual.

The third layer is Basic TW. This layer is the implementation of the
fundamental code that makes Time Warp synchronization work. It includes
scheduling code and support for rollback, message cancellation and
commitment. This is the code that is typically thought of as "Time Warp" by
those reading theoretical papers on the subject. This code is discussed in
Chapters 1-8 of the internals manual.

I ms mmm .,m amn sMsmmmmm ~ ss

Dynamic Dynamicm

Memory Creation/
Allocation Bai WDestruction

Testejl

Memory Base f

Managementagement

U
I
U
U
U

Figure 1-1: The Structure of TWOSm

Surrounding the Basic TW layer is a set of additional services, above and
beyond the basic Time Warp synchronization code. Correct Time Warpm

programs can be written and run without any of these services, but they are
required if one wants to do real work on top of the system. However, not all
programs use all of these services. The services include dyrtamic creation andm

destruction of objects, dynamic memory allocation, message sendback, 1/0,dynamic load management, and critical path computation. This code is
discussed in Chapters 9-16 of the internals manual, except for the material on
p/O, which is covered in Chapter 20.

2

reuie i oewat t d ea wr o opofte yse. oevrnt l
prgas s l o hsesries h srie icueyai crato and I

Finally, there is the tester. The tester is not really a functional part of TWOS.
It serves two purposes. Primarily, it is used for debugging purposes. It allows
a knowledgeable user to probe various internal data structures in the middle
of the run. Its secondary purpose is to serve as a command interpreter, in
which role it reads the configuration file and parses the commands found
there, passing them along to TWOS. (The tester performs this second
function only because its primary function required all code necessary to parse
user commands. Rather than duplicate that code for the purpose of reading
configuration files, the tester serves double duty.) The tester is discussed in
Chapter 18 of this manual.

The remainder of this chapter will discuss each of these parts of TWOS in
further detail. Later chapters of the TWOS Internals manual will give
complete details on how each of these parts of Time Warp works, and why
they are implemented as they are.

1.2 The Base OS

TWOS performs most operating system functions on its own. However,
there is one fundamental service that is usually provided by some other
operating system. That service is message routing. TWOS is meant to run on
parallel hardware. Information must be sent from one node of the hardware
to another all the time. Some of this information is in the form of user-level
messages. Some of it is systems messages. In either case, information must
be transported from one node to another.

Every different architecture TWOS runs on handles the passing of
information from one node to another in a different way. On the Butterfly,
information is passed through a switch that simulates shared memory. On
the Mark 3 Hypercube, information is routed along a limited number of
communications paths, passing from one node to another until it reaches its
destination. On a network of Sun machines, information is sent out on a
local area network, usually an ethernet. The code'necessary to make the
information move is thus highly dependent on architecture.

On any parallel or distributed system, the designers of the system must have
made some provision for moving information from node to node. Typically,
they have provided software that performs this function. Therefore, some
message passing system usually exists before the port of TWOS to that
hardware begins. T- the extent that this code is reusable, rewriting it inside of
TWOS is wasteful.

A second point in favor of using the base operating system is the complexity
of message passing software. TWOS requires a relatively modest message
passing capability. Any message presented to the message passing system
must be delivered to the requested node reliably, without corruption of the

3

I

contents. Messages need not be delivered in the order presented to the i
message passing system, nor is there a hard deadline on how quickly they
must travel, nor need every message take approximately the same amount of
time. Despite the relati',, y primitive message handling support required, U
the complexity of codc -2quired to provide this service is great. The issues of
writing the code ar- iairly well understood, but the amount of code is still
substantial. Also, message passing code offers many possibilities for rarely- m
occurring bugs.

Witd- only small exceptions, there is nothing Time Warp specific about U
mes,,age passing at this level. At the level of node-to-node transportation, the
system need not worry about virtual time issues, nor about message
cancellation. TWOS probably performs better if messages are given priority by
order of their virtual times, but will work correctly with any reasonable
ordering. Performance might also improve if messages and antimessages
could cancel in internal message passing queues, but, again, doing so is not I
necessary for correctness. In some cases, giving priority to TWOS system
messages over TWOS user messages is important, and in other cases negative
messages must have priority over positive messages. But, other than these U
small exceptions, some of which can usually be handled with existing features
of the existing message passing system, nothing about this functionality is any
different under TWOS than under any other distributed system.

Thus, if TWOS did not rely on an underlying operating system to pass
messages from node to node, a new message passing subsystem would have
to be written for each new architecture TWOS was ported to. The code
required would be voluminous, complex, and probably filled with bugs. On 3
the other hand, existing systems already provide stable, efficient message
passing systems. With only minor exceptions, they offer all of the
functionality TWOS needs in its message passing system. The choice of 3
whether to use the existing message passing system or writing a new one is
thus easily made, in most cases.

TWOS sometimes uses other base OS services at very low levels. For
instance, while TWOS has its own I/O facilities, many of those are built on
top of I/O primitives provided by the base OS. TWOS' memory management U
system sometimes relies on the underlying memory management system,
since TWOS itself does not handle virtual memory or page tables. Like
message passing, these underlying OS services are used because they closely m
match what TWOS needs to do, anyway, thereby avoiding the complexity of
correctly -oding the services. 3
1.3 Standard OS Services

TWOS is required to perform number of actions typical to almost all U
operating systems. For instance, it must allocate and deallocate memory. It
must switch contexts to permit user jobs to run, or to return to the operating i

4 U

system. It must support internal queues. It must copy data from one place to
another. And, like most distributed systems, it must be able to map a user-
meaningful object name to the object's physical location in the system.

The obvious question is, why not use the underlying operating system to
provide these services, just as it provides message passing? The answer is
that the underlying system either cannot provide the exact functionality that
TWOS requires, or cannot provide it efficiently enough, or cannot give
TWOS sufficient control over the results.

Another issue is that trapping to an underlying operating system is often
quite expensive, in time. If the operation being performed is already fairly
heavyweight, like moving a message over a network, the cost of trapping to
the underlying operating system is dwarfed. If the operation being performed
is not particularly expensive itself, however, then the cost of the trap may be
much more than the cost of the actual work being done.

For instance, TWOS uses memory very extensively. The system is forever
requesting memory for messages and states, and returning that memory to
the pool of unused bytes. This operation must be very quick if TWOS is to
run fast. Also, TWOS knows that it will make many memory requests of a
certain size, those matching the length of message buffers in the system.
TWOS can handle its own memory management much more efficiently than
the underlying system can.

TWOS also needs complete control of context switches. It must arrange that
parameters are properly placed, and context switches must be cheap. Given
that they are being performed in certain stylized ways, TWOS can switch
contexts more cheaply than the underlying system.

Queues are ubiquitous in TWOS. Every process has three of them attached, a
queue of input messages, a queue of output messages, and a queue of states.
The queueing discipline in TWOS is somewhat different than that of most
systems, in that messages must be ordered by their virtual times, and, within
a virtual time, by their selectors, and, within a selector, in an unspecified but
deterministic way. The possibility of message cancellation between two
identical messages of opposite signs is also not usually supported in exiscing
queueing packages.

TWOS copies data frequently. The system must make a copy of every
message an object sends out to save in the object's output lueue. Events are
presented copies of messages, rather than the originals, so that they may
modify them without corrupting them for rollback purposes. Every event
must be given a fresh copy of the state produced by the last event. Copying
occurs many other places in the system. A TWOS port usually requires the
writing of an assembly language copying routine to ensure that the operation

5

I
is fast enough. An assembly language data comparison routine is often
written, for the same reason.

TWOS needs to translate user-level object names to physical locations.
Within a node, the physical location is a pointer to the control block for the
object. If the object is not located on the local node, then TWOS must be able
to find out which node does host the object. Existing systems often either do 3
not provide this functionality, or do not provide it at a reasonable cost, or do
not provide it in a scalable manner. The dynami., load management
capability in TWOS adds a number of complexities to the problem that many
existing systems would not handle well. Thus, TWOS performs namemappings itself.

On any particular underlying system, one or more of these services might be
sufficiently well matched to TWOS' needs that putting the service into TWOS
wouldn't be necessary. However, experience shows that this set of services is
usually not provided by underlying operating systems well enough to use
their existing code. But there is nothing fundamentally specific to TWOS that
requires these services to be part of the TWOS kernel.

1.4 Basic TW

For most people familiar with the Time Warp paradigm, Time Warp is all
about scheduling, rollback, and message cancellation. That is the base of the
idea. So these are the services found in the basic TW layer of TWOS. In i
conjunction with the less TWOS-specific services offered by the lower layers,
this layer comprises the minimal base for running a Time Warp system.
Pro%,ided users don't need special services, and provided the system has access I
to infinite memory, no more is necessary. TWOS could perform correctly oncertain types of applications with no other capabilities. 3
TWOS scheduling is by lowest virtual time first, independently calculated on
each node of the system. Each node maintains a queue of objects, ordered by
the next virtual time at which they have work to do. Whenever a node 3
completes a piece of work, it selects the object at the head of this queue to
serve next, without interacting with any other node. TWOS must maintain
this queue in the proper order. As new messages arrive, rollbacks may i
change the virtual times at which objects need to execute, causing the
scheduler queue to be reordered. Also, when an object completes execution,
the system must determine when it should execute next, and move it to its i
proper position in the queue.

Whenever an out-of-order message arrives, or whenever a message is i
cancelled, TWOS may need to roll back. Rollback is only needed if work has
been done by the object receiving the out-of-order message at a later virtual
time, or if the cancelled message had already been processed. In either case,

6 U

TWOS must determine if a rollback is necessary, and, if so, determine the
correct time to roll back to.

As a result of rolling back incorrect computation, TWOS may need to cancel
some messages sent by the rolled back object. Merely delivering the negative
copy of the message to the same place the positive copy went will achieve
cancellation. There are some complexities involved with whether the
message was to the object itself, or to another object on the same node, or to
another object on a different node. Also, since the underlying message
delivery subsystem does not guarantee ordered delivery of messages, TWOS
must be prepared to handle a negative message that beats its positive copy to
the destination.

While perhaps not a theoretical necessity, in any real system only a finite
amount of memory is available. Even in virtual memory systems, while the
system may not run out of memory for a long time, using vast amounts of
memory can be costly. The Time Warp commitment mechanism permits a
Time Warp system to free some of the memory it is using, throwing away
messages and states that the system is through with, and will never need
again. If a state or message will never be needed to support a rollback, it canbe discarded.

TWOS commitment works in two parts. First, TWOS must determine which
items can be safely deleted. This determination is made by calculating Global
Virtual Time (GVT), defined to be the time of the earliest unprocessed event
in the system. Since events cannot change other events at earlier virtual
times, no event with a time earlier than GVT will ever be needed for rollback,
so any information associated with such events can be discarded. Finding the
states and messages that can be discarded and deleting them is the second part

* of commitment.

There are a surprising number of tricky issues that must be dealt with at this
layer. In addition, the special services provided at higher levels tend to cause
further complexities in this code. None the less, the code at this level is
actually of modest size. Performing theoretically correct Time Warp
synchronization does not require that much code. Performing it efficiently,
with the functionality real users need, is the source of most of the system's
complexity.

U
I
I
I

7

U

I
1.5 Special Services 3
While the Basic TW layer provides the minimal necessary services for TWOS
synchronization, it has many shortcomings. For instance, it does not permit
dynamic creation and destruction of objects. Many applications require the
creation of objects not known about at the beginning of the simulation, and
many applications are able to discard objects that they know they will not U
need any longer. TWOS provides these capabilities.

In a very basic TWOS system, all data local to an object is kept in a statically 3
sized state. This method makes some common programming methods, such
as the use of Lists and trees, very difficult and expensive, as the user always
requires as much space for each copy of a state as the largest size his data
structures may ever achieve. TWOS relieves this problem by permitting the
dynamic allocation and deallocation of memory segments. 3
Real applications require input and output from the system. TWOS supports
some basic I/O operations. The I/O capabilities of the underlying system
cannot be used because their I/O operations cannot be rolled back. TWOS 3
provides a form of I/O that works correctly in the face of rollback.

Applications that are irregular in their performance behavior require
dynamic load management to achieve their best performance. In addition, a
good dynamic load management system makes good static load balancing
unnecessary, saving the user from a great burden. TWOS contains a dynamic 3
load management capability, as well.

The critical path of a simulation is a limitation on how fast it can be run in 3
parallel. Users wishing to speed up their programs may want to examine the
program's critical path. TWOS is able to calculate the critical path of a
simulation by running it, memory permitting.

1.6 The Tester 3
The tester is used for debugging the TWOS system. It has hooks into all layers
of the system except the Base OS. The tester is able to parse debugging
commands and call the appropriate debugging routine in the system. It also 3
provides the ability to access debugging commands on any node in the TWOS
run. Approximately 100 debugging commands are available from tester,
allowing users to examine objects' input and output queues, individual
messages and states, and internal TWOS data structures.

The tester parser is also used to read the configuration file. All commands in 3
the configuration file are comprehendible by the tester. The tester can create
objects, send them messages, adjust system parameters, turn dynamic load
management on and off, suppress output, and cut off the run at a particular U
point. Typical users interact with the tester only through the configuration

8 U

I
i file, as they should have no need to debug TWOS itself. In a few cases, the

tester debugging facilities can help in debugging a user-level problem.

I
I

I
I
I
I
I

I
I
U
U

II
5
I
3
3
I
U
U
3
U

II

Chapter 2: Basic TWOS Data Structures

TWOS applications are decomposed by their designer into units called objects.
An object should be some identifiable entity in the simulated world that
performs substantial amounts of work independently. TWOS is capable of
making a further division of objects along the temporal axis of virtual
spacetime into units called phases. For instance, one object could be divided
into three phases, one handling all activity during the first third of the
simulation, another handling the activity during the second third, and the
final one handling the activity during the last third. TWOS automatically
assures that consistency is maintained among the various phases of an object,
despite any rollbacks that may occur in any of the phases.

All TWOS objects consist of one or more phases, each of which is an
independent process. A phase can be located on any node of the system,
without regard for the location of any other phases of the object. Each phase
is has its own controlling data structure that is represented in one of the
nodes' scheduler queues.

Every object is defined as being of some type, similar to the declaration of class
in object oriented programming. For example, in a simulation of pool balls
rolling and colliding on a table, some objects will be of type p oo l_b a 11,
others will be of type tablesector, and others will be of type cushion.B Associated with each type is executable code describing how objects of that
type handle event messages, plus some initialization and termination code.
All objects of a given type on a given node share the same code, so this codeI must be reentrant. Also, objects of each type have a set of local variables
specific to that type. Every object gets its own copy of these local variables,
called a state. The state correspond to instance variables in object oriented
programming.

I
I
I
I
I
I

11I

I
U

2.1 Object Control Blocks

Object I
Control
Block 3

Input Queue Name Status Output Queue i

L]SVT [Zyper 7Pointer

m- StatePointer

W Stack
Pointer 3

Statistics

U

State Queue U
Figure 2-1: Structure of a TWOS process 3

Figure 2-1 shows a conceptual picture of a TWOS process (phase). The central
structure represents the executable and control portion of the process, and is3
known as the object control block (OCB). (It should be called the phase
control block, but the existing terminology predates the invention of phases,
and has not yet been removed from the code. OCB will be used throughout, U
but readers should remember, when relevant, that a given object can consist
of several phases, each with its own OCB.) The process' name (consisting of
the object's name and the phase delimitation times) is stored in its OCB. The
process' simulation virtual time (SVT), the virtual time at which the process
is to execute next, is also kept here. The OCB's type pointer indicates the
user-defined type of this object, and provides a means of getting at the code
for the object. The state pointer points to the state being used by the process'

12 3

current event, and the stack pointer points to the stack for that event. Also,

the OCB contains all of the statistics kept by TWOS for this process.

The object control block also contains pointers to three queues, shown in

Figure 2-1. To the left of the object control block is the process' input message
queue. This queue contains copies of messages sent to the process, ordered by
their virtual receive times. Unlike most systems, TWOS cannot discard

messages it has already handled until it can be certain that they will not be
needed again, since a rollback may cause them to be re-executed. Therefore, at
any moment in the TWOS run, some of a process' messages will have already

been handled, while others are awaiting handling. A pointer in the object
control block indicates the latest message so far handled.

To the right of the object control block is the process' output message queue.
This queue contains copies of all messages sent by the process to itself or to
any other process, ordered by their virtual send times. In case of a rollback
that requires the process to cancel output messages, the copies stored in the
output queue will be used for that cancellation.

Below the object control block is the process' state queue. This queue contains

copies of the process' local state information. If the process needs to roll back
to a particular simulation time, the state queue entry with the next earlier
time will be restored as the process' current state. Since every eve.t
performed by the process is likely to cause a change in some of that local
information, typically one state is saved for every event performed. Correct
operation does not require all states to be saved, but doing so has proved to
yield better speedup than saving only some of them. Since states can containI dynamic memory segments that may not change from event to event, saving
a state does not always require saving all pieces of the state. The state queue is
ordered by the time of the event producing the copy of the state.

Object control blocks are kept in one of two places. Normally, they are stored
in a node's scheduler queue. When a process is migrating, however, its object
control block on the sending node is moved into a queue of migrating
processes until it has been completely received on the destination node. (See
Chapter 13 for details on process migration.)

2.1.1 Objects, Phases, and Processes

Users writing simulations for TWOS define objects. These objects are the
units of parallelism, from the user's point of view. A given object has a
locally available state that it can easily access, but other object's cannot access if
and it cannot access other object's states easily. The user never needs to
concern himself with any decomposition below the level of processes.

TWOS, however, can further automatically divide objects into smaller
entities called phases. Chapter 12 fully describes phase decomposition. For

I
13•

B
the moment, it is sufficient to understand that a given object is composed of
one or more phases. Each phase can be independently located on its own I
node, or several phases of the same object can share a single node. Phases are
the unit of processor scheduling - each has its own OCB, each has its own
time at which to be scheduled, and so on. From a scheduling point of view,
in fact, TWOS does not recognize any relationship between phases of the
same object. 3
To avoid confusion, this manual will speak mostly of processes. A process is
one phase, which may or may not be an entire object. The term "object" will i
be used when referring to the collection of one or more phases making up the
object. "Phase" will be used only when dealing with the specific
characteristics of a process that relate to temporal decomposition. i

2.2 States

Generally, processes use a state as an input to an event, and produce a state as
a result of the event. The state used as input must be timestamped earlier
than the event, while the state produced will have the same timestamp as the 3
event.

A diagram of the state data type is shown in Figure 2-2. The state has a header 3
storing control information, such as its timestamp, whether the event
prodi-ing the state is in error or not, and a pointer to the object control block
that owns the state. The state also contains pointers for files the process I
currently has open. In addition, there is a table of dynamic memory
segments. Processes can allocate and deallocate dynamic memory segments
in user code (as explained in chapter 9), and this table keeps track of them. U
Finally, there is a statically sized data area. The size of this data area is
dependent on the type of the process.

States normally reside in a process' state queue. Each process requires only
two states for correct execution - one to handle the next event, and one to
handle any possible rollbacks. The state used to handle rollback is the latest
state for the process that can be proven to be correct. However, if only two
states are saved, any rollback must roll all the way back to the provably correct
state and go forward from there, re-executing every subsequent event. If 3
more states are saved, a rollback need only go back to the latest state at an
earlier time than the rollback. In practice, TWOS tries to retain all states
produced by a process until they are known to be correct. [Bellenot 921 3
describes the performance implications of saving fewer than every state.

BU

Virtual
Time File

Header Status Pointers

W PCB
PointerDynamic__ _ __ _ _

Memory
Pointers_____

Statically
Sized
Data
Area

Figure 2-2: Structure of a TWOS State

When processes migrate, their states must be shipped to other nodes. States
can be fairly large, complex data objects, however, because of the attached
dynamic memory segments, all of which must also be shipped to the
destination. Therefore, TWOS has a special queue in which to keep states
that are being moved to other nodes. Only when all pieces of a state have
arrived at the destination is the state removed from this queue.

15

kU

2.3 Messages U
TWOS messages come in two types - user messages and system messages.
User messages are sent by processes and are delivered to processes at the
explicit request of user code. System messages are sent from one node's copy
of TWOS to another's. Users cannot send system messages and system
messages are never visible to user code. The two types of messages share
much of the same delivery mechanisms, but get very different types of
treatment. 3
User messages come in several subtypes. The most common is the event
message, which causes an event to occur at the destination process. Also, the 3
user can send dynamic creation messages and dynamic destruction messages,
which are discussed in Chapter 14.

Message Virtual Virtual
Meage Send Time Receive Time 3

Lede Sender L Receiver

Selector Length3

Sign Flags3

Message
Text

3
3

Figure 2-3: Structure of a TWOS Message i
Figure 2-3 shows an event message structure. It consists of a header and text. 3
The header contains control information, including the identity of the
sending and receiving processes, the sending and receiving time (virtual
times, not real time), the length of the message's text, a user-specified message 3
selector, the sign of the message, and flags. The flags are used to indicate
whether a message is travelling forward or backward, whether the message is

16 U

being migrated, whether an input message has had its event run yet, and
whether an output message is a candidate for lazy cancellation. The header
information generally cannot be altered or examined by an application, other
than through certain special interface calls. The message text, on the other
hand, is completely available to the receiving process. The user can include
any type of information in the text area.

2.4 Virtual Times

TWOS supports a complex virtual time data structure. It consists of three
fields. The first field is the simulation time field, the second is called
sequencel, and the third is called sequence2. Users are encouraged to use the
simulation time field to encode passage of simulated time, while the two
sequence fields are meant to be used to encode sequentialities within a single
simulated time. Virtual times are ordered by their simulation time fields
first. Two virtual times with identical simulation times are further ordered
by their sequencel fields. If those fields are also identical, the virtual times
are ordered by their sequence2 fields.

TWOS currently implements the simulation time field as a double length
floating point number, taking 64 bits, on the BBN GP-1000. Both sequence
fields are implemented as unsigned long integers. TWOS uses the particular
data representations of these types of data items on the GP-1000 to implement
fast comparison macros, but TWOS also contains slower, more portable,
comparison routines.

17

U
U
U1
U
U
U
3
3
I
U
U
3
3

II
U
3

Chapter 3: Sending and Receiving TWOS Messages

The easiest way to explain the Time Warp message sending and receiving
code is to use an example of the handling of a single message. The message
followed in this example is a message sent from process A, on node 0, to
process B, on node 1, with a send time of 100 and a receive time of 200.
Process A is running an event at time 100, when the process issues a
schedule () command, as shown below:

schedule ("B", 200., 0, 5, "hello")

This command means Time Warp is to send a message to the process named
"B" to be received at time 200. (A simple floating point time is used in t"
example. In actual practice, an abstract data type of type Vt ime is required f
the receive time parameter to schedule (.) The message's selector is 0. It
contains five bytes, the word "hello".

TWOS runs as a single load module, with user code and system code linked
together. schedule () is a routine defined internal to TWOS. It makes a
check to determine whether the message to be sent will be received after a
user-provided cutoff time. If so, the simulation will end before the message is
received, so actually sending the message would simply waste time and
memory. Therefore, in this case the system merely returns, doing nothing
with the message in question. Since the effect of the message is invisible
until it is received, and this message would never be received, the user
cannot tell that the system did not actually send this message. Messages with
receive times after the user-specified end of the simulation are also not
counted in statistics.

If the message is to be received before the cutoff time, the system calls
s wit ch_b a c k (, an assembly language context switching routine.
switchback () is meant to switch control to the Time Warp Operating
System, to a routine called s v_t e 11 0). (The actual mechanism for getting to
s v_t e 11 () is a little more complicated than this, but the additional details
are not relevant to this discussion. schedule () used to be called tell (),
which is why sv_tell () has the name it does.) Time Warp maintains
separate stacks for the operating system itself and for any process that is in the
middle of running an event. Until switch back () is called, TWOS is still
running off the stack of the process requesting the schedule).
switch back () saves the context for the process' stack, restores the context
for TWOS' own stack, and arranges for control to be transferred to
sv-tell().

Once s v-t e 11 () is called, TWOS is running again under its own stack. Error
checking is the first thing done by s v_t e 11 (0. The routine makes sure that
the length of the message to be sent is less than or equal to the length of a

19

U

packet. Then it makes sanity checks on the receive time of the message. The 3
receive time may not be less than the current send time. If the receive time
and send time are the same, the process receiving the message cannot be the
process sending the message. (This restriction helps avoid some forms of
infinite loops.) Finally, TWOS checks if the user is trying to issue a receive
time that is greater than +-. Such receive times are illegal. The system also
makes sure that the user has not given a null string for the receiver's name.

Assuming that the message passes all error checks, the message is copied into
the process' argument block, a structure kept in the object control block. The U
process' status is set to indicate that the object is trying to send a message, and
dispatch() is called.

di s pat c h () is the main scheduling routine in TWOS. Many things can
happen once d ispat c h() is called. Other processes may have services
performed for them first, before the system gets around to this schedule ()0. a
For instance, a process may need to determine what virtual time it will
execute at next. Or some other process' message may be sent off before process
A's. di s pat c h () may even decide to run another process before it gets 3
around to actually sending the message we are following. The ordering of
actions is purely by the earliest virtual time first, at this stage. The virtual
time of process A's request is the send, time on the message, which is also the
virtual time of the event process A is executing. (Further details of the
workings of dispatch () can be found in chapter 4.) 3
Assuming that process A is still the process on this node with work to do at
the earliest virtual time, dispatch() will deal with this message
immediately. It calls a routine named sv doit), sv doit() has the
responsibility for actually sending a message.

TWOS must have two copies of each message. First, it must have a copy to
send to the receiving process' input queue. Second, it must have a copy to
save in the sending process' output queue, in case the message needs to be
cancelled. From TWOS point of view, it does not have any copies of the
message at all, yet, since a TWOS message is a combined structure containing
both header information used by the operating system to handle the message 3
and the data that the user wanted to transmit to the receiver. The copy of the
message data provided in the schedule () call cannot be used as one of the
copies, first, because it has no header attached, and second, because it is in the 3
process' memory space and may be written by the process at any time.
Therefore, sv_doit () must make two copies of the requested message. It
calls a routine called mkomsg () twice. If either call fails due to lack of message 3
memory, then TWOS must delay sending this message. Chapter 10, on
message sendback, discusses steps that would be taken if there were not
sufficient memory to make one of the copies of the messages. If those steps

20

failed, the event trying to send the message would be rolled back. In the case
of this example, there is no memory problem.

mkomsg () allocates a full-sized message buffer of the maximum size of any
message that can be sent, plus extra bytes for header information. The
message buffer is first entirely cleared. (If the buffer is not zeroed, garbage
bytes may cause misordering of the message in the receiver's input queue,
leading to non-deterministic results.) Then some of the header fields are
filled in, such as the identities of the sender and receiver.

Assuming that mkomsg () succeeds in finding sufficient memory for both
copies of the message, sv doit () copies in the text of the message. One copy
is marked as negative and immediately stored in the sending process' output
"queue. de liver () is called to handle the positive copy that is to be sent to
process B.

n deliver () is a general purpose function that is called whenever a message
has to be sent somewhere. It is used not only for normal message delivery,
but for message cancellations, message sendback for memory management,
and process migration. Generally, deliver () is called whenever a node has
a message that is supposed to go into some queue at some process. At this
point, the system does not know whether the destination process is local or
remote, nor whether the message should go into that process's input or
output queue, nor whether the message requires any kind of special handling.I deliver () is the routine that finds the answers to those questions.

The first task of deliver () is to determine what sort of handling the message3 requires. deliver () looks at bits in the message header to determine
whether the message is going forward for delivery, or backward for memory
management purposes. Based on this information, it calls the phase location
facility to determine where the process receiving the message resides. This
chapter will not go into the details of process location; see chapter 17 for
further information on process location. In the normal course of events, the
phase location facility will return a location data structure immediately. This
data structure contains a field identifying the node hosting the destination
process. If that node is the local node, another field contains a pointer to the
process.

In this case, the destination process is not on the local node. Process A, the
sender, is on node 0. Process B, the receiver, is on node 1. d e 1 i v e r () is
currently running on node 0. Therefore, the only information in the process
location data structure is that the destination process is on node 1.
deliver) is prepared to handle certain complicated circumstances
involving migrating processes and misdelivered messages, but those issues
don't arise in this case. (See chapter 13 for more information on these issues.)
deliver() simply sees that the process is not local and calls sndmsg() to
transport it to the node hosting the receiving process.

21U

B

sndmsg () sets up several message header fields for the use of the underlying 3
message passing facility. Then enqmsg () is called to put the message into a
queue of messages to be sent off of this node. Each node maintains a single
queue of messages to be sent to other nodes. System messages are kept at the
head of the queue, to ensure fast delivery. After the system messages are
negatively signed messages. These messages will usually cause work being
done in error to roll back. Since TWOS runs faster if less work is misdone,
the system tries to deliver negative messages faster than normal messages.
Also, theoretical correctness requires negative messages to have delivery 3
priority over positive messages. After system and negative messages, the
queue contains positively signed user messages, in order of their send times.
The message from process A is put into its proper place in this part of the
queue.

Once the message is in the queue of messages to be sent, sndmsg () calls 3
send_fromq 0. The basic purpose of send_fromq () is to attempt to ship
off the first message in the queue of messages to be sent. For a variety of
reasons, the attempt might not succeed. If it does not, the system will try
again later. The code used by send_fromq () and the functions it calls are
highly machine-specific. This chapter addresses only hardware-independent
issues, so the example message drops out of sight, at this point, being passed 3
off to the underlying message delivery system. (Further details of what
happens to the message on a sample architecture, the BBN GP-1000 running
the Mach operating system, can be found in Appendix G.)

Eventually, that underlying system will pass the message back up to TWOS,
this time on the destination node, node 1. The main loop of TWOS I
periodically checks for incoming messages using a function called
read themail (). The implementation of this function is machine-specific,
but it typically tries to allocate a local message buffer to hold the message, then 3
enqueues it in the node's receive queue. TWOS will eventually look at the
front of this receive queue to handle incoming messages. When it does,
TWOS calls msgproc ().

msgproc () is a general routine to handle any message that arrives at the local
node. The message may be a system message or a user message. In this 3
example, it is a user message. deliver (), the general purpose user message
handler mentioned earlier, is called again, this time on node 1. Node 1 hosts
process B, so the path through de 1 i ve r () is a bit different this time.

Again, de liver () checks to see if the message is travelling forward or in
reverse. In this case, as for all normal event messages, the message is
travelling forward. Then deliver () calls the phase location facility. Since
the receiving process is local, the phase location facility will return an answer 3
immediately. This answer will consist of a location data structure with one
field showing that the process is local, and another holding a pointer to the U

22 U

I
process' control block, deliver () calls nq input_message () to put the
message in the receiving process' input queue.

nq_inputImessage () makes some preliminary checks to make sure that the
message is being correctly delivered to the proper process. This is one
example of the TWOS strategy of multiple redundant checks, a strategy that3has proven very helpful in finding system bugs. nq input_message () then
calls find (), an extremely general purpose function that finds the position
for an element in a sorted queue. In this case, f in d () is looking for the
correct position in the receiving process' input queue. That queue is ordered
first by receive time, then by message selector, then by a byte-by-byte
comparison of the texts. Having a fully deterministic ordering of input
queues is vitally important to TWOS. If the queues are not deterministically
ordered, TWOS cannot guarantee the same results as a sequential run.

find () returns a pointer indicating where to add the incoming message in
the linked list that forms the input queue. In the normal case, the message
will simply be slipped into place in the queue. (If this were a cancellation
message, the results of f ind () would indicate which message the
cancellation will annihilate in the queue.) At the moment, however, the
message is occupying one of a limited number of message buffers available to
the system. So nqinputmessage () will attempt to allocate space for the
message, copy it from the buffer, and return the buffer to the buffer pool. If
there is no memory shortage, this operation will succeed.

The arrival of the message will also cause process B to re-evaluate when it
needs to run next. B may have been scheduled to*run after time 200, the
receive time on the message. In this case, B's control block must be changed
to indicate that B needs to run at time 200, to handle this new message, which
will also cause the scheduler queue to be reordered. Alternately, perhaps B
was already scheduled to run at time 150. The new message at time 200 will
be handled after the event at time 150, so the control block need not be
changed.

A more complex possibility is that process B has already run at some time
after time 200, at time 250, perhaps. In this case, TWOS needs to execute a
rollback to ensure that the work done prematurely at time 250 is undone.
Rollback is not covered in this chapter, so we will presume that process B has
not executed any events later than time 200, and that it is currently scheduled
to perform its next event at time 150.

"Node 1 must check to see if the arrival of this message caused a rollback, then.
A routine called rollback () does just that. rollback () checks the time of
the operation that might cause a rollback (in this case, the arrival of a message
at time 200) against the process' current simulation time. Process B is
currently at simulation time 150, so this new message will not cause process B
to run at an earlier time. Thus, no rollback is needed and r o 1b a c k()

2 3

I

returns immediately. The input message has now been completely 3
enqueued, and delivery of the message is complete.

Once node 0 has had the message put into the queue of messages to be sent off 3
node, the remainder of the event that requested the message can be run.
Process A is marked as being ready to run again, and sooner or later the
scheduler will return control to it.

At the destination end, the user's process cannot tell that a message has
arrived until the resulting event is scheduled. (User code is not permitted to 3
examine the future event list.) When the event caused by the message is
run, the message becomes visible to user code. At some point in the
application code that handles this event, process B will almost certainly need 3
to examine the message that caused the event. The process must be given a
copy of the original message, not the message itself, because the process may
modify the message's contents. If this event needs to be rolled back and re- 3
executed, the process will need a pristine, unaltered copy of the original
message. Therefore, the copy of the message stored in the input queue is
never actually accessed by the process. Instead, a function called
messagevector () makes a copy of the message for use during the event.

TWOS then sets up control structures to allow a context switch to the code
that will run process B's event at time 200. It also puts the copy of the
message in a place where the event code can find it. Then context is switched
to the event. At some point during the event, the message causing it will U
probably need to be examined. The user code executes a macro called
msgText () to get a pointer to the message. It can then do whatever it needs
to with this message.

3U
3
3
3
U
I

24

Chapter 4: Event Scheduling

3m Each node used in a TWOS run has its own local scheduler queue containing
all processes handled by the node. Figure 4-1 shows a closeup of the scheduler
queue. The scheduler queue is a linked list of phase control blocks ordered by3 the next virtual time at which the processes are to execute. Whenever TWOS
decides to schedule a process to run, the dispatch () routine selects the first
process in the scheduler queue, which is also the process with the earliest
unrun event on the node. In Figure 4-1, the process with an event at time 100
will run next, unless some other work is scheduled for an earlier virtual time
before the scheduler next selects a process.

Processes can be in a variety of conditions. A process in the GOFWD state has
rolled back, and needs to be examined to determine the time of its next event.
A process that is BLKINF is blocked at infinity, and currently has no more
work to do. Only a process that is READY is eligible for immediate running. If
the process at the front of the scheduler queue is READY, dispatch () calls
load obj () to prepare that process for running an event.

A READY process is eithi EDGE or NONEEDGE. EDGE status means that the
process has not yet started the event it wants to run. NON-EDGE status means
that the event has already been partially run, and will be resumed in its
middle when this process is selected for execution. Events can be interrupted
by the system when there is more important work to be done. In the BBN
GP-1000 version of the system (and the Sun workstation version, as well,
though not in all previous versions), TWOS will not automatically interrupt
a running event, but when the event requests certain system services TWOS
can choose to switch to a different event.

3 When load_obj () is called for a process with EDGE status, TWOS must
completely set up all data structures the process needs to run its event. None
of this work is actually done in loadobj ()." Rather, loadobj () calls
objhead () to set up the process to run. Doing so requires several memory
allocations. Should any of those allocations fail to be satisfied, TWOS will
invoke message sendback (as described in Chapter 10) to free the necessary
memory. If message sendback cannot free the required memory, the event
cannot be run at this time. TWOS frees any memory already set aside for this3 event and attempts to run the event again, later.

Before any data structures can be set up, TWOS must determine the type of
the process. A process' type is defined by the user when the process is created.
In a simulation of colliding pool balls, the processes might have types "ball","sector", and "cushion". In a military simulation, the processes might have
types "division", "corps", and "air mission". A process' type defines what sort
of object in the simulation world it represents.

253

U

3

F93-71
__ 3

II
II

II

, 3
Figure 4-1: The Scheduler Queue 3

The scheduled process' type is indexed into a table to determine where to find
the code necessary to execute an event for that type. Also, the table contains
information about the size of that type's state. TWOS uses this information
to attempt to allocate a new state for this process' event, calling a routine
named loadstatebuffer (). TWOS must also allocate a stack for this
event's local use, which is also done in loadstatebuffer (.

If the state allocation is successful, TWOS must copy the contents of the
previous state into the newly allocated memory. The previous state may
have had dynamic memory segments attached. If so, TWOS does not yet
allocate or copy for those segments. 3

2
26

!I

U

After loadstatebuffer () returns successfully, TWOS tries to get memory
for copies of the messages that have caused this event. A single event can be

I caused by an arbitrary number of messages, all of which must have identical
receive times. The process already has copies of all of the messages, but those
copies cannot be given to the receiving process' event. This execution of the
event may turn out to be premature, or erroneous, and if it is, the messages
need to be preserved in their original form to permit correct re-execution.
Also, if the event changed these copies of the messages, message cancellation
would not work if one of them proved erroneous. The artimessage used to
cancel it would not completely match the altered positive message, and
cancellation would fail. TWOS does not have sufficient control of the
physical memory on all platforms to force the copies to be read-only for the
user, so the only choice is to make a -new copy and permit the event to do
whatever it wants with those copies. A routine called mes sage_vector ()
handles making fresh copies of the messages for the event.

At this point, set ctx () is used to arrange to pass control to the process' stack.
When control passes back to TWOS' main loop, as it soon will, that code will
notice that an event has been set up to execute. (For more details about the
main loop of TWOS, see Chapter 21.) The main loop may choose to do some
other system business first, but eventually the main loop will use the routine
switchover () to actually pass control to the user code written to handle
this event. This user code will continue to execute until the event is
completed, or the code requests a TWOS system service. If, for whatever
reason, the event does not run to completion, TWOS puts the process' OCB3 into NON-EDGE status.

Scheduling a process with a NON-EDGE status is much easier. The data
structures that the event requires have already been completely set up, so
TWOS merely uses setctx () to alert the main loop that control should be
switched to the process at the point at which it halted.

3 When an event completes, TWOS releases the memory used for the event's
stack (using idest roy (), a general purpose deallocation routine) and the

3 copies of its messages (using destroy_message-vector ()). TWOS then
calls go_forward () to change the process' SVT to the receive time of that
message and reorders the scheduler queue to reflect the process' new SVT.
(This process is covered more fully in Chapter 5.) This process' next event
will occur at a virtual time equal to the virtual receive time of the earliest
unprocessed message in the input queue. TWOS then calls dispatch () to3 schedule the next event.

In certain cases, TWOS must back out of an event before it completes. For
instance, the event may be rolled back in the middle of performing it, or it
may request a memory allocation that cannot currently be satisfied. In such
cases, TWOS dealocates all memory attached to the event (state, stack, and

27I

U
message vector) and changes the status from NON-EDGE to EDGE. TWOS will 3
reschedule this event at some point in the future.

U

I!
3
3
U
3!
3
3
3
3

I!
U

28

Chapter 5: Rollback

TWOS can roll back for a number of reasons, but the most basic, and probably
most common, reason is that a message arrives at a process with a virtual
time lower than that process' SVT (simulation virtual time). Such an arrival
means that the process has processed one or more events at virtual times
later than that of the newly arriving message. Any such prematurely
processed events must be rolled back. (Keep in mind while reading this
chapter that rollback can occur for other reasons, since some code discussed is
intended to handle such cases.)

The explanation of a rollback will be easier if a particular case with an actual
process and sample virtual times is used as an example. Figure 5-1, below,
shows the case. Process Y is at SVT 677, but has not yet started executing the
event for time 677 when it receives a new message for time 520.

Process Y

Figure 5-1: Process Y Is About To Roll Back

TWOS, at this instant, is in a routine called nq_input_message (). This
routine is used to put incoming messages into processes' input queues. In
this case, the positive enqueueing message for time 520 is to be placed in
process Y's input queue. In addition to enqueueing the message, this routine
calls rollback (.,Note that rollback () is called before determining
whether the message's receive time is later than process Y's SVT.

rollback () accepts two parameters, an OCB pointer and a virtual time. In
this case, the pointer points to Y's OCB and the virtual time is 520. The first
action performed by r o 11 b a c k () is to check if Y is a standard out object.
Standard out objects are used solely for output purposes, and never roll back,
since they only perform output for .a virtual time once GVT has passed that
virtual time, so if Y is a standard out object (STDOUT, in Unix terms),
rollback () returns immediately. (For more details on standard out objects,
see Chapter 20.) Otherwise, rollback () goes ahead.

29

U

After making a sanity check to ensure that Y is not going to be rolled back to a U
time before GVT, Y is put into run status GOFWD. This run status indicates to
the scheduler that Y does not, at the moment, know what time it should run
at next. The scheduler, in d i s pat c h (), must examine Y to set its new SVT
when it is in status GOFWD, using a routine called go_foorward %). In this
example, Y will next execute at time 520, assuming no further messages come
in. However, the rollback may occur because of an annihilation, or for some
other reason. In such cases, there may be no actual work remaining to be
done at the rollback time, after rollback () exits. Handling such cases is the
reason for using the GOFWD run status.

After setting Y's run status to GOFWD, rollback () will reorder the scheduler
queue, if necessary, since Y's SVT may have changed. In our example, it
changed to 520 due to the arrival of a new message. Y's SVT is set to 520 and
the scheduler queue is reordered. 3
Process Y might have been in the middle of an event at the time rollback k
was called. In this case, Y has a state that was being used to run that event, 3
and that state should be discarded. .a iice the process was in the middle of an
event, this state is not yet in the state queue, but a pointer to it would be
stored in the OCB's state buffer field. Therefore, after setting Y's SVT, I
rollback () next checks the state buffer field. If it is non-null, rollback ()
destroys the attached state, along with the stack being used for the interrupted
event and the copy of the input messages provided for that event. Also, the
effective work of the process is adjusted to reflect that any work done by the
interrupted event must be considered work rolled back. (Effective work is
used by the dynamic load management system, as described in Chapter 11.) In U
our example, the process was not in the middle of an event, so these actions
are not taken. 3
Next, rollback () calls cancelstates () to get rid of any states with times
later than the new SVT. TWOS no longer uses the jump forward
optimization, so states later than the rollback time must be discarded. After
cancelstates () returns, rollback () will call either
cancelall output () or unmarkall_output (), depending on whether
aggressive or lazy cancellation is in use. Then rollback () returns.

cancelstates () takes an OCB pointer and a virtual time as parameters.
These have the same values as rollback ()'s parameters. cancel states ()
starts at the end of the state queue, with the state having the latest virtual
time, and works backwards until it finds a state earlier than Y's new SVT.
Each state with a later time is removed from the state queue. If Y's current 3
state pointer points to the removed state, that pointer is nulled. Y's effective
work is adjusted to reflect the rolled back event, then the state may be
destroyed. (In some cases, it cannot be destroyed, due to optimizationsi

30 I

involving temporal decomposition and pre-interval -statLi. For each process,
there is at most one such state at any given moment.)

One of the states just deleted by cancelstates (might have been
associated with a dynamic creation. In this case, the process should resume
the type it had before the creation message was processed. This information is
in the last state that is not discarded, so the process' type pointer will be set to
the type pointer in that state.

In our example, cancelstates () would discard only the state at time 575.
It would set Y's type to the type in the state for time 468.

When cancelstates () returns to rollback (), the next step is to arrauge
for the cancellation of any messages that may have been sent by events that
were rolled back. Depending on whether lazy or aggressive cancellation is in
effect, rollback() calls a routine to handle all necessary cancellation
business. The process of message cancellation is fully described in Chapter 6,
using the same example used here.

I At this point, rollback() returns. However, the conceptual process of
rollback is not complete. cancel states () and rollback () undid any
work that needed to be rolled back, but rollback () did not necessarily set the
process' SVT to the proper time. In the example, rollback () set it correýtly.
Y's SVT is set to 520, and that is when it should next execute. But if the
rollback were caused by the annihilation of a message in the input queue, the
rolled back process would have its SVT set to the time of the annihilated
message. If the annihilated message were the only message for that virtual
time at that process, there would be no event to be run, and SVT would be
improperly set. Other circumstances can cause rollback () to set SVT to an
improper value.

I The first action taken in rollback () was to set the process' run status to
GOFWD. This status signals the scheduler that the process in question needs to
be examined to determine the virtual time it will run at next. Eventually,
this process will get to the head of the scheduler queue and dispatch () will
call go_forward () for it. go_forward () takes advantage of the fact that all
states at times greater than or equal to the rollback time have already been
discarded. Whenever the process plans to execute next, it will start with the
last state in its n.tate queue.

Next, go_forward () must find an input bundle to work with. An input
bundle is one or more messages with the same receive time in the process'

I input queue. A routine called earliest later_inputbundle () searches
the input queue for this bundle. If one is found, SVT is set to the receive time
of that bundle. The next event this process runs (in the absence of more
rollbacks) will be associated with this bundle. go_ forward () sets the run

13

3
status to READY and the control to EaGE, indicating that an event for the
process is just about to start. 3
One possible rollback pattern is if an input message that already ran an event
is cancelled, then some other event at a later time is run next. If lazy
cancellation is being used, any output messages associated with the cancelled
event are still in the process' output queue, unmarked, waiting to be either
cancelled or confirmed. cancelomsgs () is used to handle this situation,
and is covered in Chapter 6. One result of cancel_omsgs () is that messages
may be removed from the output queue. 3
Something rather odd can happen at this point, go_forward () has a pointer
to a state and an input bundle, and one might think that the event can go
ahead, no matter what. However, the cancellation that was just done by
cancel_omgs () may cause a problem, since all messages in that event's input
bundle might have been cancelled. The event TWOS is considering running
may have been scheduled by an earlier event at the same process, an event
that was cancelled. The symptom of this case is that the run status of the
process is no longer READY. If the cancelled messages annihilated the input 3
bundle selected earlier, then rollback () would have been called and that
routine would have changed the run status of the process, probably to GOFWD.
In this case, we need simply exit from go_forward (. Sooner or later, in its
virtual time order, the process will re-enter go_forward () and try to findanother bundle to execute.

There is another path through go_ forward . In some cases, there are no
more events to be performed by a process after a rollback. In such cases, when
go_forward () searches for an unprocessed input bundle, it does not find
one. In this path, again, cancelomsgs () must be called to get rid of any
lazily cancelled output messages for cancelled events. Also, the run status of
the process should be set to BLKINF, indicating that it has no work to do, 3
currently. Finally, if this is a phase, rather than a full object, and it is not the
last phase of the object, being put into the BLKINF state indicates that it has
completed all work for this phase, in which case it should ship its final state I
to the next phase. send statecopy () is called for this purpose. (Chapter 12
discusses the purpose of send state_copy () and its effects.)

The exit from goforward C) completes the process of rollback. The process
in question has undone the effects of the premature execution and has
prepared for running at its new virtual time. From this point, the process is I
simply scheduled to run its event just as if the message causing it had arrived
in the proper order. Figure 5-2 shows process Y after the rollback has
completed. The new SVT is time 520, the input message for time 520 has 3
been inserted into the input queue and the state for time 575 has been
discarded. The output message for time 575 remains in the queue, assuming 3

3
32

U

we are using lazy cancellation. Chapter 6 discusses what happens with this
message.

Process Y

Figure 5-2: Process Y After Rollback

33

5
U
U
I
3
3
3
3
I
U
I
U
U
3

U
I

34 3
U

£
Chapter 6: Message Cancellation

3 TWOS' optimistic execution sometimes causes messages to be sent in error.
When TWOS detects this problem, it must be prepared to cancel such
messages. This chapter discusses how TWOS goes about cancelling messages.

Messages are cancelled as a result of a rollback. The example used in Chapter
5 illustrates the situation. Process Y has executed an event at time 575,
resulting in sending a message (to process Z). Now process Y rolls back to
time 520, as a result of the arrival of a new message. How will the messageg sent at time 575 be cancelled? Figure 6-1 illustrates the situation.

3 Process Y

Figure 6-1: Process Y Needs To Cancel a Message

ftTWOS can run with either lazy or aggressive cancellation. The default is lazy
cancellation. Aggressive cancellation can be used, instead, via a switch set in
the application's configuration file. All processes in the simulation must use
the same style of cancellation. The style of cancellation can be reset by the
user through a tester command in the middle of the run (see Chapter 18 on
the use of the tester), but no guarantees can be made about correct execution if
this is done, so users should avoid doing so.

As mentioned in Chapter 5, cancellation during rollback is handled in the
routine rollback (). rollback () has set the process' run status to GOFWD,
and has cancelled any states that should be discarded. rollback () now calls
a routine to deal with cancellation. Different routines are called depending
on whether lazy or aggressive cancellation is in force.

In the case of aggressive cancellation, cancel_all_output () is called. Any
antimessages in Y's output queue will be sent off right away. That is about all
cancel all output () does. It runs through the output queue of the
process, looking for any messages with a send time not less than the rollback
time. All such messages are dequeued and submitted to deliver () for

35U

I
routing to the destination process, where they will cancel with their matching 3
positive copies.

In the case of lazy cancellation, actual cancellation must wait to determine if 3
the messages will or will not be sent by a subsequent running of their rolled
back event. Normally, when messages are sent their negative copies are
stored directly in the output queue at the instant of sending, not at the end of 3
the event. Thus, if an event does re-execute in a different way, it will start
putting messages in the output queue in the middle of the event's execution.
However, the messages from the previous, rolled back invocation cannot be B
certainly cancelled until the event completes. When it does, the process'
output queue may contain a mixture of messages sent from the rolled back
event that should be cancelled, messages sent only by the correct execution of 3
the event, and messages sent by both versions of the event. At the end of the
event, TWOS must examine these messages to see which should be cancelled. 3
unmark all output (), which is called by rollback (), makes sure that
these types of messages can be distinguished. Each message can be either
marked or unmarked. Messages put into the output queue during a normal 3
send are marked. unmark alloutput () unmarks any output queue
messages with a time greater than or equal to that of the rollback. When an
event re-executes, it may send messages again. If a message sent during this
second execution of the event matches a message sent during the previous
execution of the event, TWOS will find the message copy in the output
queue, and will realize that the message has already been sent. Lazy
cancellation permits TWOS to avoid resending that message. Instead, the
process simply marks the unmarked message. If the second execution of the
event sends some messages not sent during the previous execution of the
event, matching copies of these messages will not be found in the output
queue, and TWOS will treat these sends normally, sending off the positive
copies of the messages and enqueueing the negative copies in the sender's
output queue. The negative copies so enqueued will be marked, just as if the
event had never executed before.

At the end of the correct execution of the event, the output queue is
examined for messages with the send time of the event. Any such messages S
that are marked are left alone. Such messages were sent by the correct
execution, and may or may not have been sent by the earlier execution. Any
unmarked messages in the process' output queue for that send time were sent 3
by a rolled back version of the event, and not by the correct version. Such
messages must be cancelled, by sending out the negative copy in the output
queue to catch up with the positive copy in the receiving process' input 3
queue, where the two copies will annihilate.

In the example, if aggressive cancellation is used, the output message for time
575 would immediately be shipped to its destination for cancellation

36

U

5i
3 purposes. If lazy cancellation is used, that message would be unmarked and

saved until the event at time 575 was re-executed. If the message is sent again
during the execution, the copy in the output queue will be saved. If the
message is not sent again, the copy in the output queue will be delivered for
cancellation purposes. Figure 6-2 shows the situation after the rollback, if lazy
cancellation is in force. (The shading of the output queue copy of the message
sent at time 575 indicates that it has been unmarked.)

U

Process Y

U Figure 6-2: Process Y Has Chosen the Message To Cancel

But what would happen if the event for process Y at time 575 were itself
cancelled? Figure 6-3 shows this case, assuming that first the event for time
575 was rolled back, then Y's input message for that time was cancelled. In
this case, since no event for time 575 will be performed by Y, the mechanism
described above will not cause the incorrect message earlier sent at time 575 to
be cancelled.£

3 Process Y

Figure 6-3: The Message At 575 Has No Event

IThis case is handled in go_ forward (), a routine discussed in detail in
Chapter 5. go_forward () is called by dispatch () when a process has been
put into the GOFWD run status, indicating that the system is not yet sure of the
virtual time of the next event the process needs to perform. After
determining the time of that event, go_forward () calls cancel_omsgs () to3 get rid of any lazily cancelled messages for which events no longer exist.

3
37U

5

cancel_omsgs () takes three parameters - the OCB pointer, the time at U
which to begin cancelling (the time of the last non-rolled-back event, which is
the same as the time of the last state), and the time at which to stop (the time
of the event about to be scheduled). Starting at the beginning of the output
queue, it looks for any output messages in the range of times, non-inclusive.
Any unmarked message it finds in the range of times is the output of an 3
event that has been cancelled and will not be rerun; all such messages must
themselves be cancelled. cancelomsgs () calls dqomsg () and deliver () to
send them to their destinations for annihilation, much as 3
cancelalloutput () did.

In the example of Figure 6-3, the start time provided to can~elomsgs () is 3
520, and the end time is 677. Running through Y's output queue, the only
unmarked message for those times that cancel_omsgs () will find is the one
for time 575, so that message will be dequeued and delivered.

I\Oý "' I -

Process Z

Figure 6-4: The Negative Message Arrives At Process Z

Delivery of a negative message as a result of cancellation is handled in much
the same way as delivery of a normal positive message, as outlined in
Chapter 3. The only important difference is that, at the destination end,
instead of being enqueued, the negative message will usually be annihilated.
When nq_input_message() calls find() to find the proper place in 3
receiving process Z's input queue, a perfect match but for the sign, will be
found. Figure 6-4 illustrates the situation. (Note that this figure has no
timestamps for most items, in the interests of simplifying the example and
avoiding confusion between send and receive times. In this figure, the
crosshatching indicates a negative message.) Proce Is Z has received the
message sent at time 575 and has enqueued it. Process Z may even have U
performed the associated event.

At this point, nq_input_message () calls annihilate(), with both the 3
positive and negative copies of the message as parameters. A routine called

38

I
accept_or_destroy () makes the memory used by the incoming copy
available to the system again, and 1_dest roy () is used to dequeue the copy
in the input queue and release its memory to the system. rollback () is then
called to deal with any necessary rollback associated with this annihilation.

What happens if the positive copy of the message sent at time 575 is not in3 process Z's input queue? This can happen for two reasons. First, the positive
copy of the message might still be in transit. Second, message sendback might
have returned it to process Y. (Message sendback is discussed in Chapter 10.)3 In either case, the proper thing to do with the negative copy of the message is
to enqueue it in Z's input queue in the normal place, ordered by receive time.
Figure 6-5 shows this situation, with the positive copy of the message
eventually arriving. When the positive copy does arrive,
nq_inputmessage () will call annihilate() just as in the situation shown
in Figure 6-4, with the same results.

575,

I
£ Process Z

Figure 6-5: The Positive Message Catches Up To the Negative Message

3V
3
U
3
£

39

I

5
U
U
I
31
U
3
3
3t

II
3
U

II
40 3I

Chapter 7: Global Virtual Time Computation

Computation of global virtual time (GVT) is necessary for any optimistic
system in order to determine when work can be committed. Any
uncommitted work may still be rolled back, so output associated with it
cannot be released to the I/O device and memory used to support it cannot be
freed. Also, Time Warp based systems typically use the progress of GVT to
determine when the computation is completed. When GVT progresses to
positive infinity, the computation is done.

In theory, the correct value of global virtual time is simple to compute. AllUm nodes stop processing events and each node then finds the virtual time of the
earliest unprocessed local event. That time is GVT. In practice, such a GVT
computation method is unsatisfactorily inefficient, as all nodes must halt
processing to calculate GVT. If the computation is not halted, however,
generally the true value of GVT cannot be computed. Instead, a conservative
estimate is computed, an estimate guaranteed not to be -any larger than the
true GVT. While such an estimate may not permit commitment of all
possible work, if it is close enough it is also good enough. The estimation
procedure must also guarantee that eventually it will correctly detect the end
of the computation, of course.

The challenge, then, is to produce a GVT algorithm that is correct (never
permits commitment of an event that might be rolled back), efficient (does
not slow down the overall progress of the simulation more than necessary),
and accurate (gives a value very close to the true GVT). TWOS' GVT
algorithm meets all of these criteria.

This chapter first presents the rough outlines of the TWOS GVT algorithm,
then discusses its implementation in detail. The design of this algorithm and
its performance are covered in detail in [Bellenot 90].

3 TWOS uses an algorithm that embeds a graph structure on the nodes of the
system. The actual structure of the graph depends on the number of nodes
being used, but Figure 7-1 shows a typical sample for six nodes. A GVT
master, the leftmost node, periodically starts the computation. It informs one
or two successor nodes, each of which in turn informs one or two other
nodes. This spreading message tells the nodes to start calculation of GVT,
meaning that they must consider any messages they send to other nodes for
GVT purposes. Note that the connections shown in Figure 7-1 are purely
virtual - they have no relationship to any physical communications link in
the machine actually running TWOS. Note also that the general structure of
one node connecting to exactly one other node, except on the ends of the£ graph, does not hold for all numbers of nodes.

4
41I

I
1 ~4U

I

0 5 5

2- 3

Figure 7-1: A Six Node GVT Communications Graph

Once the GVT start message has reached the node on the right side of the 1
graph, that node knows that all nodes have started calculation of GVT. It
sends a message in the opposite direction containing its own local estimate of 3
GVT, requesting that its neighbors combine that estimate with their own
estimates. The graph is traversed in the reverse direction, gathering all local
GVT estimates into a single minimum. By the time the GVT master node is 3
reached, all estimates have been considered and the master has a correctly
conservative estimate of GVT. The master can start committing local
information on that basis. The master informs the other nodes of the new
GVT estimate, using a binary tree structure to disseminate the information.
Each node can start its own commitment procedures when it receives the
estimate. This algorithm uses fewer messages than many other GVT II
algorithms, and does not burden any single node with very many messages.

GVT calculation must consider all possible events not yet processed, 3
including any that exist only in the form of messages in transit. Therefore,
TWOS must always be able to access the virtual time of any message in transit
in order to perform correct GVT estimations. In the case of distributed
memory machines where messages may be travelling through a
communications medium, a message may be neither at the sending node nor
the receiving node when those nodes make their local GVT estimations, but
the message in transit must be included in the GVT calculations. In such
systems, TWOS must send acknowledgemel ts of messages for GVT purposes.
The sending node must keep track of any unacknowledged message's GVT 1
contribution, thus ensuring that it is included for GVT purposes. At worst, a
message will be considered for GVT purposes both at the sending and
receiving end, in which case the GVT estimate will still be correctly
conservative.

42

In a shared memory machine, or a pseudo-shared memory machine like the
BBN Butterfly, TWOS need not send acknowledgements, as the message is
never unavailable for GVT purposes. But TWOS must still be very careful to
consider all possible messages. Each node may perform its part of the GVT
calculation at a different time, so a message's GVT contribution could be
missed if its sending node computes a GVT estimate before sending the
message and the receiving node calculates its estimate before receiving the
message. Further care is necessary because TWOS messages can be kept in
several different places, due to process migration, process location, and low-
level buffering. TWOS must be sure to examine all places a message might be
stored, or the message to schedule the earliest system event might be
overlooked and TWOS might improperly commit information needed to run
that event.

This rough outline is sufficient for most purposes, but a more detailed
knowledge of GVT computation might be necessary for debugging TWOS or
for altering the algorithm. Full details are supplied below.

TWOS' GVT algorithm runs at varying intervals, but is controlled only by the
passage of real time. It is not invoked, for instance, when some node runs
low on memory, or needs to perform commitment. No matter what the state
of the system or its nodes, the GVT algorithm is started only by the expiration
of a timer. The time between timer ticks can be set by a configuration file
command (see the Time Warp User's Manual, Section 2.2.3) to any positive
integral number of seconds.

Only the node numbered 0 keeps this timer. This node is called the GVT
master. When the timer expires, the GVT master will start up a GVT
computation. In actuality, this timer does not interrupt any action being
taken at the moment it expires, so the system might continue to deliver a
message, run an event, or do any of a number of other things after the timer
has expired. The timer's expiration causes a flag to be set, and the main loopof TWOS checks that flag's value periodically (see Chapter 21). When the flag
is set, the main loop calls gvtinterrupt (), which calls gvtstart ().

gvtstart () can be called either by gvtinterrupt () (on the GVT master
node), or because of the arrival of a GVTSTART message (on any other node),
so it is somewhat general purpose. As Figure 7-1 shows, some nodes (such as
node 5, in the figure) will be informed of the start of the GVT algorithm by
two other nodes. Such nodes wait for all GVTSTART messages to arrive before
proceeding any further. Once a node has received all its GVTSTART message
(or, in the case of the GVT master, immediately), a routine called logmsg () is
called. logmsg () takes the minimum virtual time of any unacknowledged
message. This minimum is taken immediately, rather than waiting for the
next phase of GVT computation, because some of the unacknowledged
messages may be acknowledged by the time the return wave of GVT

43I

S
computation reaches this node, but may not have been acknowledged by the 3
time the receiving node performed its part of the wave. (On the BBN
Butterfly, where no message acknowledgements are required, logmsgO calls
butterfly.minO, which examines messages in certain low level buffers. This U
action is analogous to examining unacknowledged messages.)

In Figure 7-1, for example, a message may have been sent from node I to node 3
5. Node 1 lists it as unacknowledged. When node 5 starts the next wave of
GVT calculation, the message still might not have arrived, so node 5 does not
consider its virtual time. By the time this wave of GVT calculation reaches I
node 1, perhaps the message has been acknowledged, so there would be no
entry for it in the list of unacknowledged messages at node 1. This message
would make no GVT contribution, causing potential errors in GVT 3
computation. By considering the unacknowledged message's time at once,
before node 5 can possibly have started his GVT computation, node 1 ensures
that the message will be included in GVT by at least one node.

After calling logmsg (), gvtstart () calls gvtmessage () to send GVTSTART
messages to any nodes it must inform. In Figure 7-1, for instance, node 0 U
sends GVTSTART messages to nodes 1 and 2, while node 3 sends a GVTSTART
message only to node 5. gvtmessage () is a general purpose routine for
sending all kinds of GVT related system messages.

If the node running gvtstart () is the last node in the graph, with no
responsibilities for sending GVTSTART messages to any other node, then the U
first wave of GVT calculation is complete. (In Figure 7-1, node 5 is the last
node.) In this case, gvtstart () calls gvtlvt () to initiate the next wave of
GVT calculation.

gvtlvt (), like gvtstart 0, is a general purpose function. Not only is it
called by the last node in the GVT chart when it has received all of its I
GVTSTART messages, but it is called by all the other nodes when they receive a
GVTLVT message. Some nodes may receive more than one GVTLVT message
(such as node 0, in Figure 7-1). Unlike gvtstart (), such nodes must
perform actions each time they get a GVTLVT message, because these messages
carry GVT estimates from upstream nodes. For instance, node 0 in Figure 7-1
receives GVTLVT messages from both nodes 1 and 2. The message from node 1
contains a combined GVT estimate for nodes 1, 4 and 5, while the message
from node 2 contains a combined estimate from nodes 2, 3, and 5. Both of
these estimates must be taken into account when node 0 calculates its GVT
estimate. £
gvt lvt () takes a single parameter, a virtual time containing a GVT estimate.
In the case of the last node in the graph, this estimate is simply the minimum
virtual time computed by the recent invocation of logmsg (). For any other
case, it is an upstream GVT estimate passed in a GVTLVT message. In eithercase, the first thing done by gvtlvt () is to check to see if gvtlvt () has

44 I

already been called by this node for this GVT cycle. If it has not, 1vt stop () is
called to combine the incoming GVT estimate with all local information.

1 vt stop () runs through the scheduler queue, looking for the minimum
SVT of any local process. (The STDOUT object is not examined; see Chapter 20
for an explanation.) Then minmsg () is called. minmsg () checks the
migration queues for their GVT contributions (see Chapter 12) using
migr_min (), then checks some low level message queues. 1vtstop () then
calls MinPendingList () to look for messages awaiting phase location
information (see Chapter 17). On.e that information has been minned in, the
local estimate of GVT is available. It is saved, for debugging purposes, and
returned to gvtlvt (). 1vtstop () must not be called more than once, as
some of its actions are not valid if performed more than once per GVT cycle.

gvtlvt () passes a variable address to ivtstop (), which stores the local
minimum in the referenced variable. Whether or not 1 vt stop 0) was called
on this invocation of gvt 1 vt), the variable's contents is compared to the
value passed in to gvt lvt (), and the minimum taken. If all incoming
GVTLVT messages have been received, gvtlvt () then checks its node's
position in the GVT graph, sending out the appropriate GVTLVT messages
using gvtmessage (0 . For example, in Figure 7-1, node 4 sends a GVTLVT
message only to node 1, while node 5 sends GVTLVT messages to both node 4
and node 3. The GVTLVT message contains the local GVT estimate combined
with all upstream GVT estimates.

When the GVT master node (node 0, in Figure 7-1) receives all of its GVTLVT
messages, it calls gvtupdate () with the final estimate of the minimum
unprocessed virtual time in the system. This estimate is the new estimate of
overall GVT. gvtupdate () does not use the graph structure shown in Figure
7-1 to distribute the new GVT, but uses a binary tree to get the value to all
nodes as quickly as possible. (The binary tree is not used for previous GV;
cycles, as it does not provide an easy method for determining if all nodes
have been contacted, unlike the graph structure shown in Figure 7-1.)
GVTUPDATE messages are sent to any nodes that are below this node in the
tree, again using gvtmessage (). gvtupdate () also contains substantial code
to perform all sorts of secondary functions, such as timing and converting the
new GVT estimate from a complex data structure to a set of strings. It also
takes some data for use by the experimental throttling code (see Chapter 15),
determines if the simulation has ended (possibly starting critical path
computation if it has, see Chapter 16), schedules the next GVT cycle (if this
node is the GVT master), and calls gcpasL () to perform commitment (fully
covered in Chapter 8). When gvtupdate() completes, the local node's
participation in this cycle of the GVT algorithm is done, and it will do no
further GVT work until the next cyde starts.

45

I

There are some other GVT issues. The GVT distribution graph, an example U
of which is shown in Figure 7-1, is used for two of the three cycles of GVT
calculation. This graph is not trivial to generate, in all cases, so TWOS figures 3
it out once, at the beginning of the run, and saves the result for use by all
future GVT cycles. This graph is calculated by a routine called gvt cfg (), a
routine that also pre-calculates the binary tree used to distribute the new GVT 3
estimate. The graph is stored in data structures called to C I and from (]. The
binary tree information is kept, in distributed fashion, in local variables called
OutO and Out1.

A relatively low level routine called msgproc () is used to determine which
functions to call to handle various incoming system messages. For all I
incoming GVT messages, msgproc () calls gvtproc (), which sorts them outand calls the appropriate function.

One complexity for any GVT protocol that doesn't stop all nodes to compute
its estimate is handling messages sent by nodes that haven't made their
contribution to nodes that have. Referring back to Figure 7-1, consider this
example. Node 1 is sending a message with virtual time 100 to node 5.
Before the message is sent, node 5 calculates its GVT contribution, say, 200.
After the message has been sent and received, node 1 calculates its GVT p
contribution, say, 120. Since the delivery of the message for time 100 has been
completed, node 1 has no record of it. No other node calculates a smaller
contribution, so GVT is set to 120. Now node 5 has an event to run at time S
100, which is pre-GVT, so the system has made an error.

The TWOS protocol handles this problem by keeping a variable called
min msgtime. When logmsg() is called fromgvtstart(),min msg_time
is reset. (What it is reset to depends on the hardware in use, but is never too
optimistic.) Whenever a message is sent off node, minmsg_t ime is set to its I
receive time if that time is lower than the current minimum. In the example
described above, min_msg_time would have been set to 100. min _msg_time
is later used in minmsg (), called out of gvtlvt (), to make its contribution.
In the example, node 1 would thus have a GVT contribution of 100, not 120,
since min_msg_t ime would hold it back.

Many low level details of keeping data for GVT calculation purposes are
machine dependent. On the BBN Butterfly, which is a pseudo-shared
memory machine, a message is always either at the sending node or the
receiving node, whereas on a network of Sun workstations or a Mark 3
Hypercube, the message can also be somewhere in transit, either travelling on
a communications link or hidden away in a low level store-and-forward p
buffer. These machine-specific details are not covered here, but should be
kept in mind when porting TWOS to a new machine. U

4
46 U

Chapter 8: Commitment

Commitment in TWOS refers to the process of dealing with portions of the
computation that have been determined to be correct. That determination
can only be made once TWOS is certain that a piece of work will never again
be altered due to rollback. Each piece of user work done in a TWOS run has
some virtual time associated with it. Once GVT has exceeded that time, the
work can be committed.

Commitment has two possible consequences. First, memory is saved to
support rollback of events and cancellation of messages. Committed events
will never be rolled back, and committed messages will never be cancelled, so
this memory need no longer be saved for committed states and messages.
Second, since hardware and software outside of that under control of TWOS
cannot be rolled back, output to such devices cannot be done until the system
is certain that it will be committed. Thus, writes to files are only performed
once they have been committed.

The commitment process is closely linked to GVT computation. As discussed
in Chapter 7, one of the final actions each node takes in the GVT protocol is to
call the routines that commit local data. The main routine for commitment
is called gc_past (), standing for "garbage collect past". This routine runs
through every process in the scheduler queue, examining each individually.
objpast () is called for each process. After objpast (), which does the bulk
of the work associated with commitment, returns, count_queues () is called
to gather statistics. If the SHORTEN LIST compilation flag is used in the
TWOS' makefile (it is, by default), TWOS will then consider whether to split
the process in two, depending on the length of its input queue. (TWOS uses
doubly linked lists ordered by receive times to store its input messages, and
searching ,that data structure when it becomes long can lead to very high
overheads. This splitting mechanism is a quick and dirty method of
shortening the search time; the appropriate solution, which would be to use a
better data structure, could not be added in the time available.) gc_past ()
then goes on to the next process, and, after all processes are considered,
returns.

objpast () does the majority of the work of commitment for an individual
process. If the process is of type STDOUT, messages in its input queue
represent output to be written to a file. The routine commit () is called for
such processes. (For further details on output, see Chapter 20.) Next,
objpast () finds the last state in the process' state queue. objpast () then
performs the first of two passes through the process' state queue, back to front.
The purpose of the first pass is to determine whether this process has any
committed errors. If it does, TWOS will stop before any of the states have
been fossil collected, leaving more debugging information for the user. The
user error message associated with the error is printed, and TWOS jumps to

47

I

tester. This pass through the state queue also finds the earliest (in virtual U
time) state that is to be fossil collected. The time attached to that state
becomes the garbtime for this process. 3
It is possible, due to phase decomposition, that the current value of GVT is
greater than the last virtual time this phase processes. (See Chapter 12 for
details of phase decomposition.) In such cases, garbtime is set to the end of I
the phase.

The ob ipast () routine contains a great deal of conditionally compiled code
next. This code is only compiled into the system if the associated ifdef flags
are defined. Some of this code is tagged with the P LR flag and some with the
EVTLOG flag. The former is for debugging, the latter for using the event log
(see Chapter 19). Neither flag is defined, by default, so neither body of code
will be covered, here. Also, there are frequent conditionally compiled
fragments of various lengths tagged with the RBC flag. These relate to I
experimental rollback hardware, and are not normally compiled in.

ob ipast () now makes its second pass through the state queue, this time
looking for states to fossil collect. Starting with the first state in the queue, it
looks for a state with a time greater than or equal to the previously calculated
garbtime. Once it finds such a state, it breaks out of the loop and moves on to
deal with other items. If the loop isn't broken, this state is to be fossil
collected. To fossil collect a state, TWOS first checks to see if it has any 3
dynamic memory segments attached. (See Chapter 9 for details on dynamic
memory.) If the state does have dynamic memory segments, all of them
must be deallocated before the state itself can be freed.

Deallocating dynamic memory segments is complicated by the deferred
copying of memory segments used by TWOS. TWOS only copies memory 3segments that have been accessed, so a segment attached to an earlier state
may still be valid for a later state, in which case a single physical copy is used
for both. Clearly, simply deallocating such a memory segment would be a
mistake, so TWOS must check to see if the segment is needed by the next statebefore releasing it. If it is needed, TWOS shifts the pointer to the next state.

TWOS' critical path computation facility (see Chapter 16) often requires that
states be retained for longer than would otherwise be necessary. However,
this facility does not require that the entire state be retained, merely a stub. If U
this facility is being used, instead of deallocating a state at this point, TWOS
calls truncateState () . (More details on truncated states are foul d in
Chapter 16.)

Normally, however, TWOS is now ready to destroy this fossil state. It calls
I._remove () to pull it cleanly out of the state queue, then destroy_state () I
to free its memory. destroy_state () is careful to deallocate any memory
segments and deallocate the memory segment table, if one exists, before

48

deallocating the state itself. (destroy state () is used in other places, which
is why the earlier code checked for deferred memory segments, rather than
doing it in destroy_state 0.) TWOS then moves on to the next state in the

I queue.

Once all fossil states have been handled, TWOS goes on to fossil collecting
other items. If the critical path computation facility is in use, there may be
some truncated states that can be deallocated, so TWOS checks for those next.

Input messages are handled next. stats_garbtime () is called to collect
statistics on each fossil input message. Then TWOS checks for illegal patterns
of dynamic object creation and destruction. (See Chapter 14.) If critical path
computation is being used, some fossil input messages might still be needed.
For such messages, only their header is needed, not their data, so
truncateMessage () is called to free the data area, and the messages are
marked as being fossils, so they can be cleaned up later. (See Chapter 16.)

p More normally, fossil messages can simply be deallocated using de limsg (.

Once all input message fossils are handled, objpast () moves on to output
messages. After making some checks for error conditions,
stats_garbouttime () is called for each fossil output message. Then
delomsg () is called to free it. The critical path code makes no use of output
messages, so it adds no extra complexity to this part of ob jpast ().

objpast () next contains a good deal of dead code, kept only for future
reference. This code attempted to fossil collect phases and entire objects that
were no longer needed. This code is in two parts, separately conditionally
"compiled out. The first part is truly dead. The second part is largely correct,
but had been causing problems that had not been fully diagnosed by the time
TW 2.7 was frozen. This later code may be reintroduced into the system in
the future, so it will be covered here. It is phase-related, so see Chapter 12 forp clarification of any concepts particular to phases.

This code recognizes that a phase whose end time is before GVT will never
run again, and is taking up a lot of space needlessly. The only value it still
has is that it stores some statistics that will be needed by the XL STATS file.
objpast () allocates a small data structure to hold anything needed locally.
Then this code tries to find the location of the next phase of the object and
send the statistics to that phase. If it can find it without going off-node for
information (see Chapter 17 for details on why it might need to go off-node),
the local node packages up the statistics into a system message and sends
them to the later phase. 1._remove () then pulls the dead phase out of the
scheduler queue, nukocb () releases its memory, and puts the shortened dead3 OCB data structure in a special queue.

4
49

I

n

The last actions performed by ob j past () relate to certain forms of throttling.
(See Chapter 15 for details on throttling.) Some forms of throttling supported
by TWOS rely on committed information to determine how much optimism n
a given process is permitted. objpast () has earlier been accumulating a
count of how many events this process committed, and how much processing
time it committed. The code here adds up the time required to create all of 3
the process' uncommitted states and counts the number of those states. It
then uses a multiplicative parameter and an additive parameter to compare
the committed and uncommitted statistics and determine how many more
events (or how much more processing time) this process should be permitted.

5
I
I
3

I
I
3
I
I
I
I

50 U

I Chapter 9: Dynamic Memory

The TWOS dynamic memory allocation and deallocation system permits
users to expand their process' states by requesting additional memory. Since
the request expands the state, and the expanded area is available to the user
until he deallocates the space (or destroys the object), TWOS must maintain
multiple versions of the space to properly and efficiently support rollback.

TWOS does not have access to page tables of any hardware it runs on, so the
simple solution of managing single pages is not available. Similarly, TWOS
does not have access to dirty bits1 , nor the ability to swap memory segments
to disk, nor the ability to trap writes. All of these limitations prevent some of
the more simple and straightforward implementations of efficient multi-

version dynamic memory allocation. The scheme used by TWOS must work
within these limitations.

TWOS has the further limitation of being unable to map addresses issued byU the user. Therefore, TWOS cannot present the user with a dynamic memory
segment at the same address for every event. Instead, as described in the
TWOS User's Manual, Section 4.6, the using process must keep an indire-t
pointer to each dynamic memory segment. Each event needing access to .e
segment must request a translation of that indirect pointer into a physical

pointer, using the P o i n t e r P t r () call. This limitation actually permits
TWOS to make up for some of the other limitations described above.

Each TWOS state may need its own set of dynamic memory segments. Some
states will not need any segments at all. Some will need many segments, but
will access only a few of them in any given event. Some will need many
segments and will access all of them within an event. The TWOS dynamic
memory system tries to provide the minimum use of memory and as little
data copying as possible. The strategy is to make events that use dynamic
memory segments extensively pay a little extra cost to avoid taxing the events
that do not use dynamic memory at all.

Figure 9-1, a reproduction of Figure 2-2, shows how dynamic memory is
attached to a TWOS state. Each state has a pointer to a dynamic memory
table. If the previous event did not have any dynamic memory segments

attached to it, this state starts off with a null pointer to its dynamic memory
table. If the previous event had one or more segments allocated, even if it
didn't access them, this state starts off with a pointer to its own copy of a
dynamic memory table. Processes that never use dynamic memory thus do
not incur the overhead of maintaining a dynamic memory table they never
use.

I Dirty bits are a hardware supported method to determine whether a particular piece of
memory has been written or not.

51U

m

Virtual _ l
Tuime - File

Header Pointers
Status 3

m OCB Dynamic
Pointer Memory 3

Pointer

Statically 3
Sized
Data
Area

Figure 9-1: A TWOS State

52

~iI~fi

n

I
The dynamic memory table shown in Figure 9-1 contains pointers to three

dynamic memory segments and an unused entry. A newly allocated dynamic
memory table for an event that had not yet started executing would not
actually look like that. Figure 9-2 reproduces the dynamic memory table for
this state, as it would actually appear when the state and memory table were
first allocated.

3 Deferred
Deferred
Deferred

I --
Figure 9-2: A Newly Allocated Dynamic Memory Table

SInstead of having pointers to three differently sized memory areas, the table
contains three markers indicating that the associated segments are deferred.
The null, unused fourth segment is just as it was in Figure 9-1. TWOS does
not allocate memory for any dynamic memory segments and does no copying
when an event is started. Instead, the deferred markers indicate that, for the
moment, the segment has not been accessed by this event, and the previous
event's version of the segment is still the most recent version.

Figure 9-3 shows the same dynamic memory table further along in the event.
The user has called PointerPtr () on the first and third segments, but not on
the second. Note that the second segment is still in a deferred status, while
actual memory has been allocated for the two segments that were accessed.
The memory is allocated even if it develops that the user only reads the
segment in question, and does not alter it. In principle, no new copy would
be needed, in this case, since the contents have not changed at all. The
limitations on TWOS that prevent trapping of writes and access to the dirty
bits make it difficult to take advantage of this situation, however. The
originally planned TW 2.7 would have contained the ability to request read-
only copies of dynamic memory segments, which the user would have to
treat in a disciplined way, since TWOS could not enforce read-only access.
This method could have provided great advantages for some applications, but
time was too short to include it.

5I

1 53U

I
N
I

Deferred

- U
i£

I
U

Figure 9-3: A TWOS Dynamic Memory Table 3
In the Middle of an Event

TWOS' deferred copying method has two advantages. First, less time is spent 3
at the beginning of events allocating and copying memory segments that
frequently are not used. Second, less memory is used on unnecessary copies
of dynamic memory segments. The cost is somewhat higher overhead for U
copying an event's required memory segments piecemeal. This added cost is
usually quite low, being no more than a context switch into and out of the
kernel for each memory segment. If a state had a large number of memoryi
segments, and used all of them in an event, copying them all at the beginning
of the event would be more efficient. Experience with simulations run under
TWOS suggests that most events access only a subset of their process'
allocated memory segments, so the solution chosen is more efficient for the
applications of interest.

The remainder of this chapter will trace the life cycle of a typical dynamic
memory aegment from its allocation, through several events, until its
deallocation.

The most basic way to allocate a dynamic memory segment is the system call
newBlockPtr (, described in the TWOS User's Manual, section 4.6. This call

54

U

UI
allocates a memory segment of a size requested by the user and returns an
indirect pointer to it. This indirect pointer is actually an offset in the calling
process' dynamic memory table. (More precisely, it is an offset into the
dynamic memory table of the state for the event currently running for the
calling process, but the order of segments in a given process' dynamic
memory table is never changed, so the imprecision is not significant.)

K All newBlockPtr () does is perform certain timings and set up a context
switch from the user stack to the system stack. newBlockPtr () sets up this
context switch using switchback (), providing newBlockPtr_b () as a
parameter telling switchback () which system routine to perform. When
TWOS returns control to newBlockPtr (), that routine can return the3 indirect pointer to the user, since control won't come back until the segment
has been allocated.

newBlockPtrb () does the work of setting up the segment. First, it checks
for valid sizes. TWOS does not permit allocations of more than 100,000 bytes,
and negative sizes are also illegal. Also, TWOS permits only a certain
number of dynamic memory segments for each state. This limit is set at
compile time, and is 100, by default. An attempt to allocate a 101st segment is
flagged as an error, just as trying to allocate an illegal size is.
object error () is used to flag both these conditions. Since the error might
be caused by incorrect optimistic execution, TWOS should not shut down
immediately. Instead, the state of the process currently running is marked as
being in error and the process is not scheduled again unless the error is rolled
back. If the error is committed (see Chapter 8), then TWOS will halt and print

an appropriate message, since at that point TWOS can be certain that the error
has not occurred because of optimistic execution, but because the user actually
made it.

5 If the request is valid, newBlockPtr b () must first check to see if this state
has an address table attached or not. If no other dynamic memory segments
have been requested by this event, and the previous event performed by this
process (if any) did not have a dynamic memory table, the state for this event
does not have a table, either. Before a memory segment can be allocated, the

* state must have a table to store its pointer.

TWOS does not have a single static size for dynamic memory tables. Some
processes need only one or two segments, while others need dozens.
Allocating a table of the largest size any process will need for all processes is
wasteful of memory, which is always in short supply when running TWOS.
Therefore, it is not only possible that the state doesn't have any memory table,
but also that the state has a table, but all its entries are full, so a larger one is
needed. In either case, newB lockPt r_b () figures out how many entries, new
or additional, are needed and allocates a chunk of memory of the correct size
using mcreate (). If the memory is not available, the event is rolled back. If

1 55I

I
the memory is available, it is cleared. At this point, if a too small table 3
existed, its entries must be copied into the expanded table just allocated, and
the smaller table deallocated. Whether a table existed already or not, the new
table's address is stored in the state's dynamic memory table pointer.

Next, newBlockPtrb () must find an empty entry in the table. Since users
are permitted to deallocate segments, in any order, the entire table is searched, I
rather than simply maintaining a pointer to the last entry used. Any entry
with a null pointer is currently not in use, so newBlockPtrb () finds the
first such entry. Then newBlockPtr b () calls mr_create () to allocate the I
actual segment. This allocation might also fail, in which case the event must
be rolled back. (If this allocation fails, the dynamic memory address table is
not deallocated, even if there are no entries in it.) If the allocation succeeds,£
then the resulting real pointer is stored in the dynamic memory address table
entry selected earlier and the new segment is cleared. (Clearing memory
provided to the user by TWOS is a common theme in the system, as I
uncleared memory may contain garbage that user code can accidentally
examine. This situation can lead to non-determinism in identical runs, and
is very difficult to debug. Hence, TWOS takes care that all memory provided I
to users is always cleared when the user first gets it.)

newBlockPtr_b () now calls dispatch (), a routine discussed in Chapter 4 U
that chooses which process to run next. In most cases, the process requesting
the memory allocation is still the process with the lowest virtual time event,
so it will be chosen and its event resumed from the point of the allocation. I
However, if some other process received a message while the first process was
running its event, that other process may be chosen. If dispatch () does not
choose the process that requested the allocation, that process is suspended at
the point of its request. This suspension does not cause the process to be
rolled back to the beginning of the event, so, when its turn comes again, it can
resume the event from the point it left off, unaware that other work has been
done while it waited.

The return path to the process' code goes through TWOS' main loop (see I
Chapter 21), so not only might other processes be scheduled in front of the
requesting process, but TWOS may choose to perform a number of system
tasks before returning to user code. All of this activity will be utterly invisible
to the process, of course.

Once the process regains control, it has an indirect pointer to its memory
segment. Now the user's code needs to acce.,s that segment. The basic
function for translating the indirect pointer to the current physical address of
the segment is pointerPtr (). This function makes checks on the validity of
its parameter (the offset). If the offset is invalid, pointerPtr () will return a
null value, rather than itself calling objecterror). The user can choose
to flag an error at that point or continue his code.

5
56 U

I

If the parameter is valid, po i nte r Pt r () performs some timing code and
checks to see whether the requested segment is deferred. The segment under
discussion is not, since it was just allocated, so pointerPtr () uses the offset
into the address table to find the proper physical pointer and returns it. Since
finding this address was such a simple operation, there is no context switch
into system space.

Figure 9-4 shows the condition of the example process' dynamic memoryI address table. All but one entry is null. The single non-null entry points to
the segment we have just allocated.I

S

Figure 9-4: After Making the Allocation

I Now the process runs a new event. As stated earlier, TWOS does not copy
any of the existing memory segments at the start of the event. In
Sloadstatebuffer (0 , a routine used to create a new copy of a state for an
event (see Chapter 4), one action taken is to handle any dynamic memory
segments. After successfully allocating the state itself, loadstatebuffer ()
checks to see if the previous event had a dynamic memory address table. If it
did, m cr eat e () is called to allocate memory for a new copy of the table. If
the allocation fails, the event is rolled back, just as if there was no memory
available for the state itself. If the allocation succeeds, the new table is cleared.
Any non-null segments in the previous event's table are marked as
DEFERRED in the new table. The other segments are left null. Figure 9-5I shows the situation after loadstatebuffer () is done.

I
I
I

57I

S

Deferred

Figure 9-5: A New Table For a New Event 1

This event does not access the dynamic memory segment, arid does not
allocate any more segments, so the table looks the same at the end of the
event as it did at the beginning. When the next event starts running, its
dynamic memory address table also looks like Figure 9-5. 5
This next event, however, needs to use the dynamic memory segment. So it
calls pointerPtr () with the proper offset. However, there is, as yet, no valid
pointer to return to the user, so instead of simply returning a pointer, I
pointerPtr () uses switchback () to switch into system space and there
calls pointerPtr_b (). pointerPtr_b () is only called when a DEFERRED
marker is in the requested offset. pointerPtrb () must look at the previous
state to find an actual copy of the memory segment. In this example, the
previous state does not have such a copy. More generally, the segment might
not have been accessed for an arbitrary number of events. If so, every one of
those events' states' dynamic memory address tables has a DEFERRED marker
in that entry, so pointerPtr b () simply goes back through the state queue
until it finds a state that has a real copy of the segment. When the last
accessed copy is found, pointerPtrb () Uses mr create () to allocate a new
copy, stores the pointer in the current state's proper dynamic memory address
table entry, then uses entcpy () (a fast copy routine) to copy the values of the
old version of the segment to the new version. If the allocation fails, the
running event is rolled back. In any case, pointer Pt r_b () returns through •
dispatch (), giving the system a chance to do something else.

Figure 9-6 shows how the table would look after the call to pointerPtr ()
returns. Note that it looks exactly the same as Figure 9-4.

58

I

__i__

I

I I --

Figure 9-6: A Fresh Copy of the Segment

The next event decides to deallocate this segment. It calls
disposeBlockPtr () to do so. After making the usual timings,

m disposeBlockPtr() uses switch-back() to calldisposeBlockPtr b().
This routine performs the error checks and, if they are passed, looks into the
dynamic memory address table for the specified entry. If this event has notIR yet accessed this entry in any other way, all that is there is a DEFERRED marker,
in which case the entry is simply set to null. On the other hand, if the entry
has been accessed by this event, then there is an actual pointer to a copy of the
data in the entry, as shown in Figure 9-6. In this case, the memory holding
that copy is released before nulling the pointer. Control returns through3 dispatch (), as usual.

When disposeBlockPtr () returns, the segment is gone as far as this event
and any future events at later virtual times are concerned. The slot in the
table may be reused for the next segment allocated, but there is no logical
connection between the segment just disposed of and the next segment to be

i allocated. Figure 9-7 shows the situation after the deallocation. Note that the
dynamic memory address table still exists, even though it has no non-null
entries. TWOS does not deallocate the table in such cases, so a process that
once allocates a dynamic memory segment will have an address table for the
rest of the run, even if the segment was immediately deallocated and no

other segment is ever allocated by the process.

Deallocation has no effect on any saved states with earlier virtual times than
the deallocating event's. If these earlier states are required due to rollback,
they will still have access to their proper copy of the dynamic memory
segment.

5
I

59

II

S

Figure 9-6: A Fresh Copy of the Segment5

One other area of importance for dynamic memory segments is commitment,
covered in detail in Chapter 8. When committing states for a process, it is
important not to release the latest physical copy of a dynamic memory
segment. o b j p as t 0), when freeing dynamic memory s --gments attached to
states being fossil collected, first checks to see if any of the segments are

S

deferred in the next later state of the process. If they are, then the segment istransferred to that state, its'physical pointer replacing the DEFERRED marker in
the proper entry of that state's dynamic memory address table. If the next
later state has its own copy of the segment, or if it has a null entry, indicating
that the segment was deallocated during that event, objpast () simply frees
the memory used by this copy of the segment.
Dynamic memory causes substantial complications in phase migration.
These complications will be discussed in detail in Chapter 13.S

60I

I --
uU

-- U
mU

Figure 9- 6 0 rs oyo h emn

On ohr re f mpranefo dnmi mmrysgmnt s omimet

U Chapter 10: Message Sendback

The message sendback facility deals with problems of limited memory on
nodes running a Time Warp simulation. Message sendback is a limited form
of the more general cancelback protocol that was to go in a future version of
TWOS. The fundamental idea behind both message sendback and the
cancelback protocol is that if the node doesn't have memory to hold a
message or state that you need, make room by throwing away something you
don't need as much. Message sendback only throws away input messages,
while cancelback can discard input messages, output messages, and states.
The criteria for determining what is needed most is based on characteristic
virtual times for allocations. Discarding data for sendback or cancelback
causes rollback. Eventually, the events that were rolled back for this purpose
will re-execute, regenerating the discarded data.

TWOS allocates memory for many purposes. Some of these are systems
related, and such allocations typically do not invoke message sendback.
Sendback is generally used to satisfy allocations made as a result of user
requests. These include sending and receiving messages, creating a state to
run an event, allocating or accessing a dynamic memory segment (see
Chapter 9), and creating a new object (see Chapter 14). Additionally, message
sendback is used for certain allocations related to process migration (see
Chapter 13). Generally, anywhere in the code where memory is allocatedS with the routine m create (), message sendback might be invoked. This
chapter will not detail every case where sendback might occur, but will cover
the most basic case, handling an input message when memory is low. The
other cases cause analogous actions.

Time Warp has two major classifications of messages: system messages and
user messages. System messages deal with such activities as GVT
computation, process migration, phase location, and simulation end. User
messages are the more familiar stuff of Time Warp: event messages, dynamic
creation messages, and dynamic destruction messages.

Incoming system messages are put into a special buffer. Only one system
message is dealt with at a time, and it is dealt with to completion before the
system goes on to do something else. Since they exist only in this special
permanent buffer, system messages do not require the allocation of anymemory. Hence, they do not cause message sendback, and are of no further
concern to us here.

I User messages are placed in a different buffer, upon arrival. More precisely,
when the system determines that it should read a message provided by the
low level message system, it copies the message into a pre-allocated piece of
memory pointed to by rm_bu f. When the time comes to actually handle the
message, the rm buf pointer is copied to rmmsg. rmmsg can hold only one

61I

U
message pointer. When a user message arrives, the system must determine
what to do with it, and get it out of the buffer as quickly as possible. I
Assuming that this is an input message, the routine that makes the
determination is nq_input_msg (). n

In some cases, dealing with the input message can be quite easy, and will
require no memory allocation. In particular, if the new message annihilates a
message already existing in the destination process' input queue, no new U
memory will be needed. Rather, the memory of the message in the queue
will be freed, and the buffer can be immediately cleared. (This annihilation
may cause rollback, which is covered in Chapter 5. Rollback may cause the U
freeing of further memory.) Annihilation will- occur when a new positive
message matches an already queued anti-message, or, more commonly, when
a newly arrived anti-message matches a queued positive message.

More often, though, the new message is not the negative copy of a queued
message. In this more common case, getmemory_or_denymsg () is called to
put the new message into the destination process' input queue. This routine
calls mrcreate () to get a new message buffer. If successful, the incoming
message is copied into the new buffer and the rm_buf copy is then available
for use by another message. The rm_msg pointer is nulled (showing that the
node is ready to handle another input message), and the input message is
linked into its queue.

The problem arises when no memory is available to make a local copy of the
message pointed to by r m_msg, meaning that no more messages can be I
accepted until this one is dealt with. Since the local node may be unable to
free any memory until the next message arrives, and since that message's
virtual time may be earlier than that of the input message currently being
handled, the system must not simply link the buffer the message sits in into
the receiving process' input queue, as that buffer will be needed to accept the 5
next message. Therefore, if it turns out that there is no space for the next
input message, the system must call message sendback.

When message sendback is called to make room for an input message, the
system may determine that the best thing to send back is the input message
itself. Therefore, one way that space may be freed for the next input message I
is by rejecting the present one.

Whenever memory is to be freed for message sendback, the system must 5
choose the item that is the best candidate for sendback, based on some
characteristic virtual time. For sendback caused by an input message, this
time is its receive time. For sendback caused by an output message, this time n
is its send time. For sendback caused by a state, the time is the time of theevent needing the state. p

62 1

m create () accepts three parameters. The first parameter is a description of
týe amount of memory needed. The second parameter is a virtual time
characteristic of the allocation about to be made. The third parameter is a flag
indicating whether the requested allocation is immediately critical to the
success of the run or not. This flag is only set to true if failure of the
allocation means that the system can take no further action.

m create () has all of its important code inside an infinite loop. It tries toafocate memory (using the lower level 1_create () routine) until the

allocation is satisfied, or no more memory can be freed. When either
condition is fulfilled, m_c r eat e () returns, with a pointer to the block of
memory, if obtained, or a failure code if the memory could not be obtained.

When m create () is first called, there may be free memory available for use.
The first thing m create () tries to do in its major loop is a simple allocation
of free memory of the size requested. If that allocation fails, makememory ()
is called. If make_memory () succeeds, then control returns to the top of
rmcreate ()'s loop, to re-attempt to allocate the newly freed memory. There
may be enough, but, if not, makememory () will be called again. If
makememory () fails before enough memory is obtained, then, if the critical
parameter is set, mrcreate () traps to the tester. If the critical parameter is
not set, mrcreate () returns failure. (There is other code in m create ()
before the failure return. This code is used to help detect fatal memory
shortages, and is not of direct relevance to message sendback.)

makememory () takes a size and time parameter, though the size parameter is
ignored. makee_memory () starts by calling getmessageto send-back().
get_messageto_sendback () is the heart of the sendback code, as the
sendback policy is administered in this module. This routine is passed a
virtual time, the characteristic time of whatever TWOS is trying to allocate
memory for. If this time is less than the minimum local virtual time,
get_message_to_sendback () looks for something that exceeds that time,
rather than the virtual time passed as a parameter. This check ensures that
no pre-GVT message will be sent back.

I getmessage_tosend back () loops through all processes stored at this
node. For each, the routine tries to find in the process' input queue the
message whose send time is greatest, such that its receive time is greater than
the virtual time we are considering. It does not choose an antimessage. If it
finds a message that meets these criteria and is further ahead in its send time
than any other message so far seen, the routine registers that message as the
current best candidate for sending back.

After looking through all local processes' input queues, the routine will have
chosen the best candidate for sendback, if any input message at all qualifies.
The message chosen, to recap, should be the positive message with theI

63I

I
maximum virtual send time such that its virtual receive time is greater than 5
the characteristic time of the item we are trying to free space for. That
message is removed from its input queue and has its reverse bit set.
rollback () is called to roll back the process that lost the input message. (For I
details on the effects of rollback (), see Chapter 5.) The process whose input
queue held the chosen message may need to roll back to the virtual receivetime of the message being sent back, if it had already passed that time. A Ipointer to the message to be sent back is returned.

The logic behind the choice of message to send back is that, first, it makes no I
sense to send back a message whose receive time is not greater than the
characteristic time of the thing TWOS is making space for. If the system did
choose such a message, it would need it again, very soon. Given that the I
receive time is greater than the characteristic time of what TWOS is making
space for, the choice is based on the maximum send time. The rationale
behind this criterion is that choosing such a message causes a process that is I
far ahead to roll back, rather than one that is at nearly the same virtual time.
Since receive time can never be less than send time, this criterion will
probably not cause TWOS to choose a message needed soon locally over one I
that will not be needed for a long time. Antimessages are not chosen because
they are temporary residents in the input queues. The only reason they are
there is to await the arrival of their positive counterpart. Once that
counterpart arrives, the antimessage will annihilate, freeing the space it
occupies. Sending an antimessage back would delay the process of 3
annihilation, since the message-antimessage pair are, in effect, chasing each
other.

Only one message is chosen for sendback at a time. Sendback can cause
rollbacks, and certainly will cause duplication of effort, so as few messages
should be sent back as possible. When a message is sent back, the amount of
memory made newly available may be more than that taken up by the
message itself. The message may take up space next to a free block, and the
deallocation of that space may cause a free block large enough for the request
to be created, even though the message itself was smaller than the size of the
request. Also, sending back a message may cause a local rollback that will free
up more space. Thus, only one message is sent back, after which the system I
tries to perform the allocation again. Should the allocation attempt fail again,then another message will be chosen for sendback.

getmessage_tosend back () returns the chosen message's pointer to
make_memory (), which tt en calls sendback () for the message. The actual
process of sending a message back is quite simple, especially from the sending
end. Each message and antimessage in the system has a direction bit. When
the message is going from the original sender to the original receiver, this
direction bit is set to FORWARD. If the message is ever sent backwards, the

64 I

I
direction bit is flipped to REVERSE by get_messageto sendback().
sendback () merely calls deliver (), the normal message sending routine.

de li er, discussed in Chapter 3, is a general purpose routine for routing

messages. It checks the direction bit and, seeing that it is set to REVERSE,
routes the message to its original sender.

Reverse messages are received in basically the same way as normal messages.
When de live r () on the receiving node looks at the message, though, it

notices that the message is a reverse message, rather than a forward message,

so nq_outputmessage () is called, instead of nq_input message ().

5 Reverse messages are not actually put into the output queue, however. If
their matching message of the opposite sign is in that queue, the two
messages annihilate, possibly causing a rollback. If not, then the negative
copy must have been sent to the original receiver to cancel this message being
sent back. In this case, the non-annihilating reverse message is re-delivered
to the original receiver, in the hopes that it will be able to annihilate when it

I gets to the receiver, who, presumably, now has the matching message of the
opposite sign.

5 If get_memory_or_denymsg () cannot get a buffer for an incoming message,
make_memory (next tries to free up any eligible buffers in the free message

pool. TWOS maintains a pool of unused message buffers, in order to makeU message buffer allocation quick. If memory is very low and no other memory
is available, that memory can be freed. If makememory () can either send a
message back or free some buffers from this pool, mcreate () gets a success
signal. Otherwise, me_create () fails, and returns failure to the routine that
called it.

In the case of failure to enqueue an arriving input message, that message
itself is a candidate for sendback. Its direction is reversed and it is passed to
denymsg (). This machine-specific routine ensures that the message will go
back to where it came from. deliver () cannot be used because the message
in question is sitting in a special system buffer that requires handling
deliver() cannot provide. This incoming message might be a negative
message, leading to the only case in which TWOS will send back a negative
message. Normally, negative messages annihilate at their destination, so the
problem does not arise, but in extraordinary cases, a non-annihilating
negative message may have to be sent back.

The process is similar for any other allocation. For states or messages that are
sent out of an event, if message sendback fails to get enough memory for the
requested allocation, the event making the request is rolled back. TWOS
must take care to recognize that certain allocations are linked. For instance,
when an event sends a message, TWOS needs to allocate two buffers, one for
the positive copy and one for the negative copy. (See Chapter 3 for more

I
65I

I

details.) If the first allocation succeeds and the second fails, not only must
TWOS roll back the event, but it must deallocate the buffer for the first copy
of the message. This theme occurs several places in the TWOS code,
including object creation and making a new copy of a state.

Message sendback never considers discarding states or output messages. The
correct, more general way to free memory when TWOS runs short is
described in the cancelback protocol (Jefferson 901, which has not yet been
implemented in TWOS.

6I
I
I
I
I
I
I
I
i
i
I
I

66

I

Chapter 11: Dynamic Load Management

Dynamic load management relies on process migration, which is discussed in
Chapter 13, and on temporal decomposition, discussed in Chapter 12. Given
that processes can be split and moved, however, substantial work is still
necessary to ensure that the right processes are chosen to best balance the load.
This chapter discusses the code that makes those decisions.

TWOS dynamic load management works in cycles. Periodically, one
processor, called the load master, starts a dynamic load management cycle.
Using a protocol similar to that used to collect GVT information (see Chapter
7), the load master requests that all processors calculate their local load and
return that information to the load master. Once the load master has gotten
complete load information from all processors, it passes the information back
to all processors, again using the method used by the GVT protocol. Unlike
the GVT protocol, the dynamic load management protocol works in only two
waves, one collecting information, one disseminating it. The load
management protocol uses the same graph set up for GVT computation, and
does not distribute its final information through the more efficient binary
tree set up by the GVT initialization code. (Though it could use the tree.)
This chapter will not go through the details of how each routine in the
protocol connects to the next routine, or what is done in each routine, as they
are so close to the pattern of the GVT protocol, which was discussed in
complete detail in Chapter 7.

The basic metric used to calculate relative load of the processors in a TWOS
run is effective utilization. A complete description of this metric can be
found in [Reiher 90a], but, informally, it is the proportion of time a process or
node spends performing work that is committed. Processes with high
effective utilizations are contributing much to the progress of the simulation,
while processes with low effective utilizations are contributing little. If the
overall utilizations of the nodes of the processor are highly imbalanced, the
system is not applying its resources in the best possible manner, so load
should be shifted to bring the nodes into balance.

TWOS uses an estimator of effective utilization, since the system cannot
know if an event will be rolled back until it is committed, but events may be
committed long after they are processed. The TWOS effective utilization
estimator is calculated by keeping track of how much real time was spent
running each event. Each process keeps a running total of how much time it
has spent running events since the last load management cycle. It also keeps
track of the amount of time spent running events .that were rolled back
during this cycle. Events rolled back during this cycle were not necessarily
processed during this cycle, so, in certain cases, the amount of work rolled
back in a cycle may exceed the amount of work done in a cycle. A process'
effective work is the work done during the cycle minus the work rolled back

67

I

during the cycle. Its effective utilization is its effective work divided by the
length of the cycle. This is the number reported back to the load master. The
load master constructs a table of the effective utilizations of all processors and
ships that table out to all other nodes.

As each processor receives the effective utilization table, it scans the table to
see if it is an overloaded node. TWOS permits the n most overloaded nodes
to migrate work off during a given load management cycle, where n is a
parameter the user can set at runtime. (The default value is 8.) If a node is
one of the n most loaded nodes, it finds the corresponding underloaded node.
The most overloaded node matches up with the least loaded node, the second
highest load with the second lowest, and so on. If the difference between the
two loads in a particular pair is greater than some lower threshold (also a I
parameter that can be set at runtime), the overloaded node will consider
moving some load to the underloaded processor.

The determination of whether a given processor will migrate load or not,
and, if it will, to where, is made in the routine that accepts a table of system
loads in the second phase of the load management protocol. This routine is
called loadUpdate (). loadUpdate () runs through the table that has just
arrived, marking the n highest and lowest pairs of utilizations, until it has
found itself as either a high or low utilization node. If it is a low utilization
node, it will not also be a high utilization node, so it need not make any
further comparisons. If it is a high utilization node, it needs to check to see if
it should move some work to its low utilization counterpart.

While dynamic load management is used by default in TWOS, much
experimentation with it remains incomplete. The state of the dynamic load I
management code in TW 2.7 reflects that situation. There are several places
in which different methods for how to perform dynamic load management
functions are possible. The existing code often supports several of those I
methods, depending on either compile time or run time switches. One such
case is the method used to determine if a given pair of utilizations (high and
low) are sufficiently mismatched that a migration should be performed.
TWOS supports two methods, one of which looks at the difference between
the two utilizations, the other of which looks at their ratio.

Comparison by difference is used, by default. This method subtracts the lower
utilization from the higher and compares it to some minimal necessary
difference. (This minimal difference can be set at run time from the
configuration 'ile, and is .1, by default.) If the difference is greater than the
minimal difference, a migration is permitted.

Comparison by ratio can be set from the configuration file. If ratio
comparison is used, after making checks to ensure that we are not dividing by I
zero, and that the possible negative status of one or both of the utilizationswill not cause problems, then the ratio of the high utilization to the low

68 I

utilization is compared to some minimal ratio (also settable from the
configuration file). If the ratio is greater than the minimal ratio, a migration
is permitted.

If a migration is permitted, chooseObject () is called to determine what to
migrate. It takes the underutilized node's effective utilization as a parameter.
(Since the code is running on the overutilized node, chooseObject () will
have the overutilized node's utilization locally available, so it need not be
passed as a parameter.)

In certain cases, an overloaded processor will not be permitted to order a new
migration. If it is not one of the n most overloaded processors, it cannot
migrate, no matter how heavily loaded it is. If it cannot find a suitable
process to move, no migration will be ordered. Also, TWOS can only
perform one outgoing migration per processor at a time. More migrations
may be queued up, but only the migration at the head of the queue is active.
Leaving many processes lying around in the migration queue can adversely
affect performance, so TWOS will not permit an overloaded processor to
order another migration if it already has several queued up waiting to move.
chooseObject () checks for this condition by calling numMigrating (),
which counts the length of the local migration queue. The result is compared
to a value held in m a x M i g r, and, if the queue is already too long,
chooseObject () returns NULL. The maximum permitted migration queue
length is another parameter that can be set at run time in the configuration
file. The default for this parameter is 1, so at most one process will be
migrating off a given node at a time.

chooseObject () must next choose what to move. The node will move at
most one process, as there is a high per-process overhead for migration, so the
overloaded node scans the utilizations of its local processes for the single
process whose migration will best balance the two processors' utilizations.
TWOS supports two methods for choosing this process. One, called
BEST_FIT, tries to find the single process whose utilization would most
closely balance the two nodes. The other, called NEXTBEST_FIT, skips over
the one chosen by BEST_FIT and looks for the next most likely process. (The
theory is that the process that best fits the needs will frequently be doing a lot
of good work locally, usuaily being the local process with the highest
utilization. The next best fit might be a process that is not getting to do as
much work as it could, because the best fit process is running, instead. So the
next best fit process might do much more work on an underutilized node.)
BESTFIT is used by default. NEXTBESTFIT can be used, instead, by using a
configuration file command.

The BEST_FIT strategy is checked in a routine called bestFit ()i . This
routine looks through all local processes one at a time. It skips over the
STDOUT process, and also skips any process that is currently being migrated

69

U
into this node. For eligible processes, be s t F it () multiplies the utilization of
the process by a small number (currently .1) and compares the result to the I
difference in the two nodes utilization. If moving this process will not make
up for at least this fraction of the difference, then it is not a good candidate for
migration. The idea here is that moving a process that accounts for less than
10% of the difference in two nodes utilizations is unlikely to pay off. (This is
another experimental feature of dubious value, practically and theoretically.
Time did not permit testing without it.) This minimum utilization
threshold can only be changed by recompilation. If the process currently
being examined passes all these tests, then its utilization is compared to that
of all other processes so far examined to determine if this process is the one to
best balance the difference between the two nodes.

After looking through all processes, one more test is made. If this process is
the only one on the overloaded node to do useful work, migrating it cannot
possibly help, so no process will be chosen, in this case. Otherwise, the
identity of the best process found (if any) is returned to chooseObject () .

chooseObject () now decides whether to temporally split that process.
TWOS typically tries to avoid migrating whole objects, since they are very I
large. Instead, TWOS migrates just a single phase of the object. (See Chapter
12.) Therefore, after selecting a process to move, TWOS must next determine
where to split it.

TWOS can decide where to split a process in several different ways. The 3
choice of which way to use is determined by a configuration file command.
The default is called NEARFUTURE. This method splits the process near its
current SVT, selecting the later phase to migrate. This form of splitting has 5
the effect that the next event the process currently expects to run will be done
on the new node. If the process later rolls back before SVT, the piece left
behind on the overloaded node will have to do more work. Otherwise, all I
future work will be done on the underloaded node. Since typically processes
have several messages and states with timestamps earlier than GVT, this
method of splitting usually moves all data necessary to perform the next U
event, but does not move any data not necessary to perform that event.

splitNearFuture () finds the place to split, for this splitting method. If the 3
current SVT of the process is not POS INF (indicating that it currently has no
more work to do), splitNearFuture () chooses SVT as the split time.
Otherwise, splitNearFuture () looks for the last state in the chosen process' I
state queue. If one is found, the split is done at that point. Otherwise,
splitNearFuture () looks at the last input message's receive time (if any),
and chooses that. (This last choice is somewhat archaic, as if SVT is PoS INF I
and there are no states, there probably will be no input messages, either.)
splitNearFuture () does one last check to make sure that it isn't about to
order an illegal split, then it calls split_object () to divide the existing

70 U

i
process into two processes at the chosen point. (See Chapter 12 for details on
the behavior of split_object (), and its effects.) If a split was performed,
splitNearFuture () returns the later phase. Otherwise, it returns NULL.

chooseObject () can split its chosen process in other ways. LIMIT EMSGS
calls splitLimitEMsgs () to split the process in such a way that only a small
number of input messages will be moved, thereby limiting the size of the
migrating process, possibly at the cost of not moving the work that will be
done next. MINIMALSPLIT calls splitMinimal () to split the process at the
latest time of anything in its input, output, or state queues, thereby moving as
little data as possible, again at the probable cost of not moving the work to be
done next. NO _SPLIT simply breaks, so that the entire process will be moved.
Whatever method is used, chooseObject () then returns a pointer to the
process to be moved. If no suitable candidate was found, it returns NULL,
instead. If a non-null pointer was returned, 1o a d Up d a t e () calls
move phase () to migrate it to the underloaded node. (See Chapter 13 for
details of how the process is moved.) loadUpdate () then cleans up in
preparation for the next load management cycle. The load master sets up a
timer to go off when the next load management cycle should begin.

U

II
l
I
I

71

I
I
I
I
I
U
U
I
U
U
I
U
U
U
UI
U
II

72 HI

I

Chapter 12: Temporal Decomposition

TWOS permits objects to be split into pieces, each of which is treated as a

separate process by the operating system. Objects can be divided along virtual
time boundaries. For instance, object A could be split at virtual time 1000,3 resulting in two different processes, one of which handled all events for A
from the beginning of the simulation to virtual time 1000, the other of which
handled all of A's events from virtual time 1000 to the end of the simulation.
Each of these constituent parts of A is called a phase. Every TWOS object
consists of one or more phases, each treated as a separate process. An object
can be divided into an arbitrary number of phases.

Phases are invisible to the user, unless he examines a TWOS run in the
middle of its execution. A simulation will always produce the same results
regardless of how many phases its objects have been divided into. Since
phases cannot affect the outcome of the simulation, their only purpose is to
improve the performance of the simulation. Phases can be used for both

I static and dynamic load management [Reiher 90a], but the current version of
TWOS does not automatically do any static load management. Chapter 11
discusses phases' use in dynamic load management. Phases are also used as a
method of ensuring that a particular process' input queue never grows too
large. (See Chapter 8.)

Figure 12-1 shows an example of an object divided into phases. Just as above,
object A has been divided into two phases, at the virtual time 1000 boundary.
Below each phase is its identity. The phase on the left is A(-c, 1000), while
the phase on the right is A[1000, +-). The phase on the left handles all events
for A up to, but not including, virtual time 1000. The phase on the right
handles all events for time 1000 (inclusive) and later. Note that the phase on
the right has a state for time 950, earlier than any event that phase is
permitted to perform. Each TWOS event uses the state from the previous
event as input. When A needs to perform its first event at or after time 1000,
it will need a state from before time 1000 as input to that event. That is the
purpose of the state at time 950. This state must be a completely correct copy
of the last state at A(-e, 1000).

This example suggests some of the difficulties of supporting phases in TWOS.
The later phase must have a complete and correct copy of the last state of the
earlier phase. (The copy of it at the later phase is called a pre-interval state.) If
the two phases are on different nodes, then that state must be transported
from one node to the other. Moreover, the later phase on the foreign node
may have been running before the need to receive the copy of the pre-
interval state was known, in which case it has performed events with the
wrong state as input. Those events will have to be rolled back when the new
pre-interval state arrives. Unless special care is taken to ensure that the two
phases can never execute in parallel (and such special care would decrease

73I

m
parallelism), the earlier phase may roll back and generate new pre-interval
states for the later phase many times. U

A(-oo,1000) A[1000,+oo) m
Object A

Figure 12-1: An Object Divided Into Two Phases m
The code specifically dealing with temporal decomposition is of two major
classes. One class deals with the mechanics of splitting an object (or a phase of 3
an object) into two phases. The second class deals with handling the special
needs of phases during the run, primarily transport and reception of pre-
interval states. This class also includes support code, such as object location
code that is capable of dealing with phases of objects residing on different
nodes, statistics code, and commitment code. This chapter will discuss both
classes of code, but much of the code in the second class is discussed in more
detail in the chapters devoted to other aspects of the system. For instance,
most of the issues regarding phase location are covered in Chapter 17. I
Objects and phases are split using the s p1 it_o b j e c t () call. This routine
takes two parameters, a pointer to the phase to be split 'ýnd the virtual time of
the split, splitobject () first makes certain sanity checks, such as ensuring
that the split time parameter is within the phase boundaries of the phase
parameter. Also, splitobject () will refuse to split any phase that is U
currently migrating into the local node. It will not split a null phase (see
Chapter 14 for a description of a null object), nor a phase that is in the middle
of sending a message for the user, nor a phase that has an error state. The I
latter two cases are prohibited to simplify phase splitting; with sufficient
effort, the code could be made to support splitting of these types of phases

split_object () splits the later phase from the existing phase. The earlier
part of the existing phase is left with the same OCB, while the later phase gets
a new OCB. splitobject () must divide the existing phase's input, I
output, and state queues betweer. the two resulting phases, making sure that

74U

each phase gets the queue entries relating to events it must handle. First,
though, split object () finds the state that is to be the pre-interval state of
the later phase about to be split off. TWOS needs two copies of this state, one

Sfor each of the phases, so split_object () will try to make an extra copy
before splitting the phase. copystate () is used to make the copy.

copystate () is a routine specifically for making copies of states for phase
decomposition. It is prepared to allocate all necessary memory for the state
itself, its dynamic memory segment address table, and all dynamic memory
segments. It must also be prepared to deal with the possibility that the local
n, 4.Z does not have enough memory to make a complete copy of the state,
l.wever. split_object () could simply fail, at this point, as splitting a
phase is never of vital importance to the system. However, copystate ()
makes one further attempt before giving up. Generally, the later phase is
presumed to need the pre-interval state more than the earlier phase needs its
last state, as most often the earlier phase has run all of the events it already
knows about. Unless it rolls back, it will never run again, and, hence, never
need its final state again. So if copystate () cannot make a copy of the
earlier phase's last state, it will simply steal the copy that already exists in the
sending phase's state queue.

I Life, unfortunately, isn't quite as easy as that for copystate (), The existing
copy may have some deferred dynamic memory segments. (See Chapter 9.)
Since the later phase will be off on a different node, it cannot be given a state
with deferred segments. It needs actual copies of all dynamic memory
segments. So if copystate () does steal the last state, it must check to see if
there are any deferred segments. If there were, copystate () must allocate
actual memory for them, and must copy their last valid values into the new
memory before handing the state to the new phase. In the case of a stolen
state, copystate () does not actually steal the state right away. It makes sure
that the state is complete, then returns NULL to the calling routine, signalling
that routine that it should steal the state, if necessary. If copystate () cannot

I even make the existing copy complete, it returns -1, signalling total failure.

If it develops that the earlier phase eventually rolls back and does need the
stolen state, that phase can simply rerun the event creating the phase and
thus create a fresh, identical copy. There are minor issues of maintaining
correct statistics, since TWOS is careful to count states, and careful to realize
that it should not count pre-interval states. The OCB of a phase that has lost a
state in this way is marked so that the statistics gathering code will notice and
adjust the count accordingly.

split_object () actually makes its copy of the state before doing any other
work. If split-object0 is unable to complete, for any reason, any work it does
must be backed out. Making this state copy is the operation split_object ()

performs that is most likely to fail, so this operation is done first; if the state

!
75I

I

copy fails, little other work has been done, so little time has been wasted on it 3
and little extra effort is necessary to undo it. After successfully making the
state copy, split_object () goes on to handle the rest of the split.

,Th- first thing to do is create a new OCB for the later phase, using mkocb (.
This operation can fail if the node does not have enough memory. If
mkocb (,ý does fail, splitobject () is careful to release the state copy made
by copystate (). If mkocb () succeeds, spli.t_object () copies the name of
the object into the new OCB, and fills in other fields of the new OCB.
split_ ooject () must now check to see if the split is before or after the
splitting phase's SVT. If it is after, then the SVT of the new OCB should be
positive infinity and this phase should be put at the tail end of the scheduler
queue. If it is before, then that OCB's SVT should be the SVT of the splitting
phase, since the later resulting phase is the one that will run that next event
for the object. In this case, the new OCB inherits a great deal of information
from the splitting OCB, inclu'ting its control and run status, its pointers into
queues, its stack pointer, and so on. (The splitting object might be in the
midst of performing an event when split, so all of these fields might contain
valid, -nd important, values.) Then, the new OCB should be put in the
scheduler queue in the place occupied by the splitting OCB. Also in this case,
the earlier phase should wind up blocked at infinity, since it has done all of its
currently available work, so various fields should be set to reflect that status.
Since it is represented by the splitting OCB, that OCB snould be pulled out of
its current position in the scheduler queue and put at the end of that queue.

Local object location information is also updated at -,,is point. No other
object location information is changed, yet, since the object location entries on
other nodes should still direct any messages for the splitting phase to this
node. Only the local node need be concerned about what OCB on the local
node will receive the message. (See Chapter 17 for more complete details.)

Ncw splitobject () will divide up the various queues of the splitting
phace, us*.ng split list (). First the state queue is split, and the previously
copied pre-interv.l state inserted into the front of the resulting state queue for
the later phase. If no tresh copy of the pre-interval state could be made, then
at this point spl~t_object () steals the state from the earlier phase. Thereare complexities concerning the fact that a dynamic creation or destruction of
this object could take place in the vicinity of the split time, so care is taken to
make sure that both phases are of the appropriate object type. (See Chapter 14
for details of how dynamic creation and destruction affects objects' types.)
Next the input queue is divided up with s p 1 i t _. i st () , and finally the
output queue is divided. split_object () then returns a pointer to the new
OCB.

The other major issue for Lemporal splitting is dealing with rollbacks and pre-
interval states. Issues arise on both ends of the split. The earlier phase may

76

S' ' I

roll back and generate a new final state. TWOS must recognize this condition
and make sure a copy of the new state is sent to the later phase. On the later
phase's end, the arrival of a pre-interval state must cause the phase to discard
its existing pre-interval state and roll back to accommodate its new pre-
interval state.

At the earlier phase's end, eventually when go-forward() attempts to
schedule another event for this phase, it will discover that there is no such
event. The earlier phase has reached the end of its interval. This condition is
marked by setting its run status to BLKINF, just as if the phase represented an
entire object that had no more work to do. When go_forward () finds a
phase with a BLKINF run status whose phase end is not POSINF, it must ship
a copy of that phase's final state to the next phase.

400 19517 950 1100 1350

3400
95 975-

I
MA(-0,1000) A[1000,+oo)

Object A

Figure 12-2: Sending a Pre-Interval State

3Figure 12-2 shows an example. A(--, 1000) has rolled back and executed an
event for time 975. The pre-interval state that A[1000, +-) has for time 950 is
no longer valid. Rather than using the time 950 state to run the event at time
1100, this phase should use the time 975 state. Therefore, A(-o, 1000) must
ship that state to A[1000, +-o).

Sgo forward () calls send s state _ copy() to perform this task.
sendstatecopy() makes use of the limited jump forward optimization.
This optimization recognizes that if the state about to be sent out is identical
to the last state that was sent out, then there is no need to send this state out.
In the case shown in Figure 12-2, such a situation is not too likely, but what if
the 975 state were transmitted, the event for time 950 cancelled, the event for
time 975 re-executed, and the resulting state exactly the same as the first time

I
7"7

I

U
the 975 event was executed? In this situation, resending the 975 state is a
waste of time.

The limited jump forward optimization is done by a routine called
state_compare (). statecompare () uses an OCB pointer to the last state a
phase sent to compare to the state about to be sent. state_compare () is not a
terribly bright routine, at this point. It can only handle simple states that
have no dynamic memory segments; it cannot even handle empty dynamic
memory segment address tables. For such simple states, statecompare U

compares the two states, byte by byte. If they are identical, it returns 0 and the 3
new state need not be sent. Otherwise, send state copy () goes on. There
is a slight complexity at this point. The last state sent might no longer be a
valid state for this phase, in which case it is no longer in the state queue. In
this case, a special outof _sq flag is set. Whether or not the state was sent,
an out-of-state-queue state must be destroyed, at this point, using
state _ destroy(). In the future, a more complete version of
state_compare () would have fully compared states of arbitrary complexity,
but time did not permit completion of this routine.

If the state must actually be sent, ccpystate () is called to make a copy of it.
This is the same routine called by split_object (), and it behaves in the
same way. If memory permits, it makes a fresh copy of the state. If memory 3
does not permit, it makes sure the existing copy has no deferred memory
segments (see Chapter 9) and signals its calling routine that the state can be
stolen. statecompare () either works with the copied state, steals the state 3
from the earlier phase, or, if no sendable copy of the state can currently be
made, sets the run status of the earlier phase to STATESEND. In the latter case,
the earlier phase will keep trying to send the state until it succeeds, or until U
the system has determined that there will never be enough memory to send
it, in which case the system halts. (The repeated attempts to resend the state
are made from di spatch (), a routine discussed in Chapter 4. Whenever the 3
sending phase's virtual time for the current event is the lowest virtual time
of any phase on the node, sendstate_copy () will be called again.) 3
Assuming that a sendable copy of the state is available, the run status of the
phase might be either BLKINF or STATESEND. In the latter case, an earlier
attempt to send the state failed, but this one will succeed, so the phase's run
status should be set to BLKINF.

Now sendstate_copy () is ready to get the state to its destination. One
difficulty remains. The destination phase may only exist in the local
migration queue. (See Chapter 13 for a complete description of this queue.)
send-state-copy () contains code that has been ifdefed out that permits the
pre-interval state to be inserted into the state queue of the OCB in the
migration queue. This code probably works, but had been compiled out when
it was uncertain if it was causing problems. The problem in question was

78

1 I

eventually found elsewhere, but this code had not yet been returned to the
operating system. Time does not currently permit to put it back in and test it
thoroughly. In its absence, a much more inefficient set of actions will occur,
but they should be correct.

sendstatecopy () now needs to find the destination phase for the pre-
interval state. It calls GetLocation () to do so. GetLocation () is
completely discussed in Chapter 17. For the moment, it suffices to know that
it returns any locally stored information about the phase's location, or NULL if
it does not have local information. If local information is available,
sendstatecopy () calls finishsendstatecopy (). If no local
information is available, FindOb ject () is called, instead. (Chapter 17 also
discusses FindObject () .) finish sendstate copy () will eventually be
called when local information becomes available.

finish sendstatecopy () first checks to see if the destination phase is
local. If it is, putstatein_sq () is called, then rollbackstate () is called
to roll back the destination phase. Both of these routines are rather general
purpose, and are also used by phase migration, so they will be more
completely covered in detail in Chapter 13. Briefly, putstate in_sq ()
replaces the existing pre-interval state of the destination phase (if one exists)
with the new one, and rollbackstate () ensures that all necessary rollback
related actions are taken.

A few further details on r ol lb a c k_stat e () are worth mentioning here.
The destination phase either has input messages enqueued or it does not. If it
does, all that need be done by rollbackstate (. is to call rollback () with
the receive time of the first of those messages. Any events performed by this
phase will have to be rolled back and redone, since they were performed with
an improper state. If there are no input messages, complexities arise if the
phase is still migrating in. In this case, the time currently migrating in might
have some input messages. If so, then SVT must be set to signal that this
virtual time should be reperformed once its migration completes. (For
further details, see Chapter 13.) If the phase has completed migration,
however, and there are no input messages, then one further condition must
be checked. Figure 12-3 shows the case of interest.

A has been split into three phases. The earliest phase generates a new pre-
interval state and ships it to the middle phase. That phase has no input
messages, at the moment, so it should ship the pre-interval state to the third
phase. In this case, rollback-state () must forward the incoming pre-
interval state to the third phase, using send state_copy).

79

I
U

9095901100U

5950 950

A(-oo,990) A[990, 1000) A[1000,+oo) 3
Object A

Figure 12-3: Pre-Interval State Problem For An Object Split In Three Phases 3
If the destination phase is not local, finishsendstate_copy () marks the
state as a pre-interval state and checks to see if the phase is in the migration
queue. If it is, then the state is marked as needing to wait for the migration to
complete. finish_sendstatecopy () then calls sendstate () .
send-state () is heavily used by the migration code, and will be completely
covered in Chapter 13. In this situation, it causes the state to be stored in the
queue of migrating states (a different queue than the queue of migrating
OCB's). Eventually, by a process described in Chapter 13, this state reaches the
head of that queue and is shipped to its destination node, by another process
described in Chapter 13.

Once the complete state has been received at the destination node, I
recv state (), a general purpose module for handling all kinds of migrating
states (covered in detail in Chapter 13), calls put_state insq () and
rollbackstate (), the same routines used for local delivery. Both perform
substantially the same actions as if the destination phase had been local.

U3
I
U

80

Chapter 13: Process Migration

TWOS migrates processes for purposes of dynamic load management. The
process can be an entire object, or a partial object. Phase decomposition is
described in Chapter 12, and dynamic load management is described in
Chapter 11. This chapter is concerned exclusively with the mechanics of
moving a process from one node to another.

Process migration is a rather complicated basiness. (The C module
containing the bulk of the migration code, migr. c, is 3500 lines long.) This
chapter will not exhaustively cover the totality of the migration code, but will
concentrate on the more normal paths through it.

TWOS' default dynamic load management policy permits only one process
per node to migrate at a time (see Chapter 11), but the migration mechanism
is prepared to permit multiple processes to await migration simultaneously.
However, only one process per node is actively migrating at a time. The
others merely wait in the queue for their turn.

Process migration is initiated by calling move_phase (), which is given the
OCB pointer of the process to migrate and the destination node number as
parameters. move_phase () makes some error checks. (TWOS cannot move
a process to the node it's currently on, cannot move a process before the
simulation starts or after it terminates, cannot move a process that is
currently migrating already, cannot move a process that is in the middle of
sending a message, and cannot move a process containing an erroneous
state.) If those checks pass, move_phase () removes the process' OCB from
the scheduler queue. If the process was executing an event, the node's record
of what process was executing is erased and the partial event is rolled back,
which involves deallocating the state, the stack, and the message vector (see
Chapter 4). The process is then put into BLKPHASE run status and put at the
end of a local queue of migrating processs.

move_phase () counts the number of states and messages to be moved. It
determines which node serves as the home node for the process' object (see
Chapter 17 for a description of home nodes). If this node is the home node, it
calls ChangeHLEnt ry () to locally change the object location data structures. If
the home node is somewhere else, m o v e _p h a s e () calls
RemoteChangeHLEntry () to send notification to that node, and
RemoveFromCache () to clear out local record of the process' previous
location. In either case, it calls SendCacheInvalidate () to invalidate object
location information at the destination node. All of the cache and home
node activities are meant to ensure that any request for the object's location
will eventually be satisfied with the destination node, rather than the source
node.

81

I
U

If this is the only process currently being migrated by this node,
movephase () then calls sendocb_from_q) . This routine starts the
process of moving the process, but will return long before the process U
completes. It will be called periodically, as acknowledgements of the
migration are sent from the destination node. This first call primes the
pump, as it were, getting the first part of the migration out so the rest of the
protocol can be driven by the resulting acknowledgements. If there is already
another process migrating, the completion of that migration will start up this
migration. movephase () then returns PHASEMOVED, indicating success.

In the present implementation, once this point has been reached the system
will successfully move the process to the destination node or die trying. (The
latter is a definite possibility, in low memory situations, though the death is
fairly graceful.) A future version of TWOS would have been able to back orf
migrations that could not be completed.

The TWOS migration protocol tries to move a process one virtual time at a
time, from the earliest time to the latest. After setting up a new OCB at the
destination node, the pre-interval state will be moved first, then any data
items (input messages, state, output messages) for the next virtual time. Once
all of those have arrived, the data items for the next virtual time will start to
be sent.

Figure 13-1 shows a sample process to be moved. It consists of an OCB; a pre- U
interval state (for time 950); an input message, output message, and state for
time 1100; and two input messages for time 1350. This process is to be moved
from node 1 to node 2. This chapter will follow this sample migration
throughout its course.

1100 135010 11003

950 1 100P

A[1000,+)oo)

Figure 13-1: A Process To Be Migrated 3

3
82

sendocb_from_q () is a rather simple function serving mostly as a driver
for migration. It checks to see if the migration queue contains anything, and,
if so, if the item at the front of the queue is ready to migrate something else or
is still awaiting acknowledgement. If the item at the front of the queue is
ready, its migration status is set to MIGRSTART and send_phase () is called.

send_phase () calls sysbuf () to allocate a buffer for a system message. It
fills that buffer with basic information about the process to be migrated,
including its identity, how many items are to be moved, and its type. Also,
the statistics fields attached to an OCB (see Chapter 22) are copied into the
message buffer. (The fact that all statistics must be sent in this buffer limits
the size that the OCB statistics field can grow to, depending on message buffer
size.) Once all of the information is ready, sendphase () calls sysmsg () to
send a MOVEPHASE message, and sets the migration status of the OCB in the
migration queue to WAITFORACK. send_phase ()writes a line to the
migration log and returns.

When the MOVEPHASE message is received by the destination node, it calls
recvphase (). recvphase () must prepare the destination node to receive
all of the various pieces of the migrating process. First, recv_phase () calls3 mkocb () to set up an OCB for the new process. It extracts the information
about the phase from the message and stores it in the new OCB. It calls
nqocb () to put the new OCB in the scheduler queue, where its run status is3 listed as BLKINF, meaning it won't yet be scheduled. Its migration status is set
to MIGRSTART. RemoveFromCache () is called to clear out any stale object
location information that may be here and Get Locat ion () is called to
immediately set up a new cache entry (see Chapter 17 for more details). Also,
if this is the process' home node, the local pending list is checked for location
requests that slipped in between the invalidation of the previous entry and
the arrival of the migration system message. (Again, Chapter 17 has more
details.) Assuming that the process to be migrated did not consist solely of an
OCB, recv_phase () then calls send_phaseack () to tell the sender to start
shipping the first virtual time. If the OCB itself was all there was to be
moved, recv_phase () changes the local process' migration status to
MIGRDONE and calls sendphase-done () to tell the sender that the migration
is complete.

The migration module contains a number of routines like
sendphaseack () and sendphasedone). These routines typically
allocate a system buffer and send off the appropriate kind of message, usually3 with relatively little contents.

In our example, the migrating process now has an OCB on the destination
node, as shown in Figure 13-2. As yet, no messages or states have migrated.
The shading of the OCB on node 1 indicates that the OCB is in the migration
queue on that node, and is not eligible for scheduling there. The OCB on

3 83II

U

node 2 is in the scheduler queue on its node, and could run events, but it has U
no events to run, or states to use as input for them.

0U
I

A[1000,+oo)

Node I Node2 I
Figure 13-2: OCB Set Up On New Node 3

When the sending node receives the process acknowledgement, it calls
recv_phase_ack (), which finds the migrating process in the migration
queue, sets its migration status to OCBSETUP, and clears the WAITFORACK
status. Then it calls send vt i me () to ship off the first virtual time.
sendvt ime () will be called once for each virtual time that is to be shipped.

send vtime () allocates a system message buffer and fills it with all necessary
information for shipping out this virtual time. It must figure out what
virtual time is to be moved, and also what virtual time will be moved after
this one. (If there is only one virtual time left to move, the next virtual time
to be moved is set to the end of the phase.) sendvt ime () must also count 3
the number of states (zero or one), the number of input messages, and the
number of output messages that are to be sent. Once all this information is
gathered, it is copied into the message buffer and sent off as a MOVEVT I ME U
message. The phase limit field of the local OCB for the migrating process is
set to the virtual time being moved, the migration status is set to SENDVTIME,

and the waiting status is set to WAITFORACK. A special check is made to U
determine if we are shipping out the minimum virtual time sent from the
node (for GVT purposes, see Chapter 7). Then this node awaits an
acknowledgement.

In the example of Figure 13-1, the first virtual time to !end is 950, and the next
is 1100. At 950, there is a single state to be sent.

When the receiver gets this MOVEVTIME message, it calls recvvtime (). It
finds the receiving OCB using GetLocat ion (), makes a few error tests, and U
copies the necessary information into fields in the OCB. It sets the OCB's
phase limit field to the time that is moving (950, in the example), and sets the 3

OCB's next phase limit field to the next time (1100, in the example). The

TWOS scheduler will not schedule any events for this process at times higher

than its phase limit. Since its phase begin is 1100, and its phase limit is 950,

there are currently no events this process can perform. The counts of
messages and states are copied into the OCB, as well. The migration status of

the OCB is set to RECVVTIME, and send vtime ack () is called.

When the sender gets this ack, it can start shipping out all data associated
with this virtual time, since it knows the receiver is ready to get it. In
recv vt imeack (), the sending node sets the migrating process' migration
status to SEND INGVTIME and its waiting status to WAITFORDONE. Then it starts
shipping out information as fast as possible, without waiting for further
acknowledgements. It sends out the output messages first. Then it looks in

the local STDOUT object's queue for messages from this object, and sends them.
(See Chapter 20 for more details on the behavior of the STDOUT object.) The

|U input messages are sent next. All of these messages are marked MOVING,

indicating that they are part of a migration and receive special queueing and
GVT treatment.

3| -

Deferred

I Figure 13-3: A State To Be Moved

Once the messages have been sent (but not necessarily received), if there is a
state to be sent, recv vtime_ack () calls send-state (). The state is marked

85I' i .. . _

I
as migrating. If it is a pre-interval state, as it is in the example, it is also
marked as such. Figure 13-3 shows the state that is to be moved. It consists of U
its header, the normal data part of a state, a dynamic memory address table,
and three allocated dynamic memory segments, one of which is deferred.
(This state would not actually be migrated if it were a pre-interval state, as
such states never have deferred memory segments. However, this chapter
will only cover the details of shipping a single state, so the example discussed
will be as general as possible. See Chapter 9 for more details concerning
deferred memory segments.)

send state () allocates a state migration header and copies all relevant
information about the state into it. send state () must then determine how
many message packets will be needed to ship this state to the receiver. Unlike
messages, states can be bigger than a message buffer. In addition, they can
have dynamic memory segments attached, making them, effectively, even
larger. TWOS must ship the state out in pieces and reassemble it on the other
end, leading to further complications.

States are sent to other nodes by putting them in a special queue. This queue 3
can contain states from migrating processes and states sent from one phase to
the next to cause rollback (see Chapter 12). send state () must now put this 3
migrating state into that queue.Rollback:Between Phases

sendstate () is a general routine called both for migration purposes and for
purpose of shipping a new pre-interval state to a phase to force it to roll back. I
There is no point in sending more than one pre-interval state to a given
phase. COly the most recently shipped pre-interval state is needed; any others
will simply be discarded, anyway. Therefore, at this point sendstate () has
an optimization that looks through the queue of moving states to see if there
is another pre-interval state already being sent to this phase. If there is, that
state is removed, if it can be safely removed. It cannot be safely removed if it 3
is in the process of being transmitted, or if it is not a pre-interval state, or if it
is migrating (as that would mess up the count of states to be migrated), or if
it's not going to the same destination.

Then sendstate () inserts the migrating state into the end of the moving
states queue and calls sendstate_fromq (). This routine looks at the state U
at the head of the state migration queue and determines if it is ready to be
shipped. This state may already be in the process of moving, and may be
waiting for acknowledgements, in which case sendstatefrom_q ()
returns immediately. If the state is ready to be moved, then
sendstate_from_q() must determine if it is attached to a migrating
process that hasn't moved yet. (This situation could arise if the state at the 3
head of the queue is a non-migrating pre-interval state.) If the destination
phase isn't ready to receive it, this state must not be shipped. The state 3

8
86

I

U

migration queue is reordered to move something that can be shipped to the
front, if any such state exists.

If the state at the head of the state queue can be moved,
send state from_q () creates a system message. send_state_from_q ()
will be called-more than once to ship a single state, so the following code is
somewhat general. sendstate from_q () must check to see if this state has
already started moving, by looking at the state migration header's segno field.
State are shipped in segments. There is one segment for the state's header
and body, plus one for each piece of dynamic memory attached to the state. A
deferred piece of dynamic memory counts as a segment. There is no extra
segment for the dynamic memory address table. In the example state shown
in Figure 13-3, there are a total of four segments to be shipped, one for the
state's header and body, and one for each of the three allocated dynamic
memory segments.

In addition, each segment may be large enough to require multiple message
packets for transport. Each packet can carry around 500 bytes of data, so only
very modestly sized state segments can be transmitted in a single packet. Each
of the segments may consist of multiple packets.

If the segno field is set to zero when send_state from-q () reaches this
point, then no segments have yet been sent. If, in addition, the pktno field is
0, the destination process does not yet have any information about the state it
is to receive, other than possibly the fact that it is coming. (If this is not a
migrating state, but a non-migrating pre-interval state, the destination process
does not even expect the state.) In this case, the destination process must be
informed of the incoming state and its contents before anything further can
be done.

TWOS generally cannot count on ordered delivery of messages, unless a
higher level protocol assures it, so send state from_q () must ensure that
the receiver is ready to accept the pieces of the state in any order. Thus, when
sendstate_from_q () starts to ship off a state, it must be certain that the
first packet of information sent contains everything that the destination
process will need to know to reassemble the state. That information consists
of the total number of segments to be sent and the total number of packets to
be sent. Those pieces of information are stored in the state header, in fields
called nosegs and no-pkts, so all that send state_from_q () has to do to
transmit that information is make sure that the first packet sent contains the
state header. To make sure that nothing further happens until the
destination process is ready, sendstate_fromq () sets the migrating state's
waiting-for-ack flag to indicate that no more packets can be sent until the
receiver indicates that it is ready for them. The state's migration header is set
to indicate that the state has started migrating.

87

I
U

sendstate_from_q () decides what part of a state segment to send in each

message by maintaining a count of the number of packets sent for the I
segment being transmitted. It uses this count to calculate an offset into the
segment. Bytes are copied into the allocated message buffer from this offset.
make_statc _message () is called to ,et this message buffer up, then its I
fields are filled in to help the destination process identify what segment and
packet it is carrying. It is sent out as a system message of type STATEMSG, using
the sndmsg () call. Then sendstate_fromq () determines if all packets of
this segment have been sent. If they have, sendstatefrom_q ' moves on
to the next segment, checking at this point to see if all segments have been
sent. If they have, the state's wait ing_for_done flag is set, indicating that it I
expects a completion signal from the destination process.
sendstate_from_q () then exits without taking further action, having sent
out one packet of the state.

send_state_from_q () will be called again when the destination process

sends an acknowledgement of the receipt of the packet just sent. However, U
send_state from_q () can be called from the main loop, as well, when
TWOS determines that working on a migration is the most important thing
for the node to do. (See Chapter 21 for discussion of the TWOS main loop.)
The main loop may call send_state from_q() before the destination
process has fully handled the last packet, or even before that packet has
progressed off node. Unless the outstanding packet is the first packet of the
first segment, send statefromq () will not wait for an acknowledgement
to send the next packet. Whenever called, it will just go ahead and send 3
another packet. The only exception is for the first packet, since the
destination process will not be prepared for the other packets until it has
received the first one. When the entire state has been sent, 3
send_state from_q () will not move on to the next state until it receives
word that all of the packets have been received.

One special case that send_state_from_q() must deal with is deferred
memory segments. Such segments have no actual data associated with them.
All that must be sent to the destination process is an indication that there is a 3
deferred segment and its position in the dynamic memory table.

In the example shown in Figure 13-3, assume that the state header and body 3
requires two packets, the first dynamic memory segment also requires two
packets, and the third dynamic memory s.gment uses a single packet. In this

case, send state fromq () would first send out the first packet of the state
header and- body. The migration header for this state would be marked as
waiting for an acknowledgement. When the destination process sends the

acknowledgement, send_state_from_q () will ship out the second packet of
the first segment. Then, either when that packet is acknowledged or the
system otherwise decides to deal with moving states, send_s catefrom_qq()

88 3

3 will send out the first packet of the second segment, which is the first
dynamic memory segment. Next, the second packet of that segment will be
sent. Then, when send sta te_ from_q() is called again, a special packet
containing the information necessary to set up the deferred segment will be
sent. Finally, the single packet of the final segment will be sent. The sending
node will then wait for a done signal from the destination.

Each time that an acknowledgement of one of these packets is received,
recv state_ack () is called on the sending node. recv_state ack(3makes sure that the right migration is being acknowledged, then simply calls
send state from_q () again. Eventually, the receiver will send a done
signal. Once that signal is received, recv state done () will remove this3 state from the state migration queue. A certain amount of care is necessary
when doing so, as moving a state can have GVT consequences. Its arrival at
the destination phase can cause a rollback to the beginning of that phase, and
the only record that the rollback will occur is the shipment of this state. If the
state is part of a migration in progress, other mechanisms ensure that GVT
considers the consequences, but if the state is a pre-interval state sent due to
rollback, recv_state done () must compare its time to the minimum
message receive time yet seen. If the state's time is lower, that time must be
saved for the next GVT calculation. In any case, when the state is removed
from the migration queue, it is destroyed and returned to the memory pool.
Then send ocb_from_q () is called, to determine if the completion of this
state send will permit the sending node to ship a migrating phase's next
virtual time.

We now turn to how a node receives a state. The basic routine is
recv state 0. recv state () is called for each packet of the state that
comes in, so it must be able to set up the state data structure, fill in the empty
parts as new packets arrive, and recognize when all of the state has arrived.
recv state () first calls GetLocation) to find the phase whose state is
arriving. After error checks to deal with problems when the expected phase
isn't there, the segment number of the incoming state packet is checked. If
the segment number is zero, then the packet is part of the state header and
body; otherwise, recv state () finds the appropriate entry in the state's
dynamic memory address table. The state header and body might not yet
exist, if the segment number is zero, in which case a null pointer is assigned
to the state pointer, instead of a pointer to the state. If the incoming packet
does not belong to not segment zero, then at least the first packet of segment
zero has already arrived. (The sender waits for an acknowledgement of that
packet before sending any others.) The arrival of that very first packet should
have set up both the state and its associated address table. Paranoid code
checks to see if they have been set up, but that code is not normally compiled
in.

8
3 89

U

Regardless of what segment is being dealt with, this might be the first of its
packets to arrive. In that case, no memory has yet been allocated for that
segment. All packets of a segment contain the overall length of the segment,
so that information can now be used to allocate the appropriate amount of
memory. If the segment is a deferred dynamic memory segment, then it can
be so marked in the dynamic memory address table. Otherwise, mcreate ()
is called to allocate memory. An experimental piece of code that is not
compiled in tried to do some emergency operations if this allocation failed,
but that code is not yet properly debugged. So, if the allocation fails,
recvstate () will back off the entire receipt of the state by deallocating any
memory already used for the state (using destroystate()) and calling
send state nako.

If the sender gets a state nak, it will immediately restore the status of the
migrating state to indicate that no work has been done to move it, since the
receiver just undid any such work. recvstatenak() now calls
sendstate_from_q () to send out the state at the front of the queue. The
state at the front of the queue will usually be the one just rejected by the
receiver. There is no necessary reason to believe that the receiver will be able
to accept it, this time, but TWOS has no other choice but to try resending it,
since TWOS cannot, as yet, back off of a process migration. Eventually, when
GVT calculation and commitment rolls around (or when rollback at the
destination node frees space), the receiver may have enough room for the
state. If the receiver never frees enough space, TWOS eventually notices the
deadlock situation and fails, complaining of insufficient memory. Note that,
in this case, the lack of memory can be directly caused by the non-
deterministic choices made by dynamic load management, so one run of the
simulation may succeed, while another on the same number of nodes fails.

More frequently, and happily, there is enough room to allocate the required
segment's space in the m create () call in recv state (). In this case,
recv state () checks to see if the allocation was for segment zero. If it was,
then a dynamic memory address table may need to be allocated, as well.
recvstate () checks to see if one is needed, and, if it is, calls mcreate ()
again to allocate it. A failure here is just as bad as a failure to allocate the state
header and body, and causes the header and body to be deallocated and a nak
sent. If the allocation succeeded, the dynamic memory address table is
cleared. Then the OCB's rstate field is filled with a pointer to the new state
under construction. Until the state has been completely received, it will be
accessed through this r s t a t e pointer, only. It is not linked into the state
queue until transmission is complete. If this is not segment zero being
constructed, the newly allocated segment's pointer is copied into the
appropriate place in the state's dynamic memory address table.

90

U

N If the segment is not deferred, the data carried in the packet is copied into the
segment. At this point, the packet under consideration may or may not have3 been the first packet received for this segment. If it was the first,
recv state () just allocated room for the segment. If not, recvstate ()
obtained a pointer to the earlier allocated memory for the segment. In either

Scase, the segment's memory pointer plus an offset is used to determine where
to start copying, and the packet length determines the extent of copying.

rec C state () must now determine whether it has reached any milestones
in this state transmission. First, it checks to see if any more packets are
expected. If so, it calls sendstate ack () to signal the sender that it is ready3 for the next one. It decrements the number of packets it expects and checks
again to see if it has all of them. If it does, the OCB's rstate pointer is nulled,
to indicate that there is no state under construction. recvstate() calls3 sendstatedone () to signal complete reception of the state.

If the state has completely arrived, recvstate () must determine what to do
Swith it. There are more complications here than might be expected. This

state might be migrating, or it might be a pre-interval state sent due to
rollback. In either case, other state receptions and incoming event messages
may complicate handling of this state. recv_state () thus checks to see if
this was a MOVING state, indicating that it was sent as part of a migration. If
the phase has set its SVT to a time earlier than this st 4 ,e's, a rollback has
occurred at the receiving end and this state is no longer needed, so it is
discarded with dest roy_state () . Otherwise, recvstate () calls
put_state_in_sq () to deal with the problem.

putstatein_sq () checks to see if this is a pre-interval state. If it is, and
this phase already has a pre-interval state in its state queue, that state is
removed and destroyed. The sending node will never have more than one
pre-interval state in transmission at a time, and takes care to ensure that pre-
interval states are shipped in the order of their generation, so the incoming
pre-interval state is guaranteed to be a more up-to-date version of the pre-
interval state than the queued one. Some care must be taken here to ensure
that the receiving phase maintains its proper object type. (See Chapter 14 for-
details of object types, and their relations to states.) putstatein_sq ()
then finds the proper position in the state queue for this state and puts it3 there.

recvstate () decrements the number of states it expects to receive as a
result of migration. If it has received all the states, input messages, and
output messages that are part of this virtual time, recvstate () calls
rollbackphase (). rollback_phxse () will usually call rollback (), at
this point, setting the SVT of the receiving phase to the proper value.
rollback_phase () then sets the phase limit for the receiving phase to be the
next time to be transmitted. If all virtual times have been transmitted, it calls

3
91I

I

send_phasedone(), to signal complete reception of the phase to the 3
sending node. If there are still virtual times to be shipped,
rollback_phase () calls sendvtimedone () to signal that the next virtual
time can be shipped.

In the example of figure 13-1, when the pre-interval state at time 950 has been
completely received, this is the path that will be taken. recvstate () calls
rollbackphase 0, which sets the phase limit at the destination phase to
the next virtual time to be sent, which is 1100. Note that this phase's
responsibility starts at virtual time 1000. During the course of migration, this U
phase may have received new event messages for times between 1000 and
1100. Figure 13-4 shows such a situation on the receiving end, with a message
received for time 1030 and one for time 1070. Until the pre-interval state
completely arrived, events at these times could not be run. As soon as that
state arrives, however, the local node can schedule those events, if it wants.
The next virtual time to be migrated, 1100, will not have any effect on those
earlier events, so they can be safely run. If another message was received for
time 1150, however, its event could not be run until all data for time 1100 was 3
received.

Phase 3
Limit

1050 070 1150 1 3

9503

A[1000,+oo)

Figure 13-4: A Migrating Process Can Now Run Events 3
Of course, recvstate () must also be prepared to handle non-migrating pre-
interval states. Once such a state has been totally received, recvstate () I
calls p u t _ s t a t e _ i n _ s q () to properly place it and then calls
rollbackstate 0(. rollbackstate () is used to roll back a phase when it
receives a new pre-interval state. It is not called for migrating pre-interval
states, as such a state need not roll back its destination phase, since that phase
knew about that state before migration started and had already taken care of
any necessary rollback.

92

3

1100

A[1000,+=)

Figure 13-5: Pre-Interval State Rollback During Migration

rollbackstate () was discussed in Chapter 12, but will also be covered
here. If the receiving phase has any messages in its input queue, the arrival
of the new pre-interval state should cause the phase to roll back to the receive
time of the earliest such message. rollback () is used, for this case. If there
are no such messages, then either a migration is in progress or it is not. If a
migration is in progress, then migrating input messages may eventually
arrive. The arrival of a migrating input message normally does not cause a
phase to roll back, but it should, if a new pre-interval state has also arrived.
Figure 13-5 shows the situation. A[1000, +-) is migrating in, and has already
received a pre-interval state for time 950. A new pre-interval state, for time
975, arrives. The input message, state, and output message for time :100 are
in transit, but have not yet arrived. The proper action for this phase is to roll
"back to time 1100, so that when the input message for that time arrives, its
event will be re-executed with the proper input state (from time 975), rather
than saving the results of the execution with the improper input state (from
time 950).

To achieve this effect, rollbackstate () calls rollback () with the phase
limit as the rollback time. In Figure 13-5, for example, the phase limit is 1100,
since that is the time migrating. A[1000,+-)'s SVT will be set to time 1100.
When the state for that time arrives, it will be discarded by recvstate (), as
described earlier. The output message will be queued for lazy cancellation,
and the input message will cause a new event for'time 1100 to run, using the
new pre-interval state.

The third possible option for rollback-state () occurs when the migration
has completed and there are no local input messages. Chapter 12 covered that
option thoroughly.

93

I

That completes the actions taken by r e cv_st at e (. Going back to the 3
example from Figures 13-1 and 13-2, the pre-interval state for A[1000, +-) has
arrived and been queued, as shown in Figure 13-6. recvstate () called
rollback_phase (), since the state was the only item at virtual time 950, and I
rollback_phase() called send vtime done () to inform the sending node
that time 950 had been fully received.

3

A[1000,+oo) A[1000,+oo)

U
Node 1 Node 2

Figure 13-6: The Pre-Interval State Has Been Migrated U
At this point in the example, node 1 has received a virtual-time-done
message and called recv_v-timedone(). recv_vtimedone() finds the
migrating process in the migration queue, sets its status to SENDNEXTVTIME,
and clears its waiting status. Then it calls s e n d'vt i me () again.
sendvtime () acts as before, making a system message to send to node 2
containing the inventory for the next virtual time to be shipped. Referring
back to Figure 13-1, that virtual time is 1100, and there is a state, an input
message, and an output message to be sent for that time. When the system
message containing this inventory arrives, node 2 will again run
rec v_vt i me (), storing the inventory and returning a virtual time
acknowledgement. Upon receipt of the acknowledgement, node 1 calls
recv vtime ack () and sends off the output message, the input message,
and the state, in that order. Transmission of these items is as before, with the
additional point that the messages are marked as migrating.

When a migrating messages arrives, nq _ input _message() or 3
nqoutputmes sage () (depending on which queue it is destined for) will
give it special treatment. Such messages never cause rollback, and, in the case
of an output message, should be enqueued even if they are negative and
reversed. (Normally negative reverse messages for the output come from
extraordinary message sendback cases, as described in Chapter 10, and are
returned to the sender in the expectation that they will annihilate.) If
migrating messages annihilate, they are treated normally, causing rollback.

94

The enqueueing routines must check to see if all pieces of the virtual time
inventory have arrived, just as recv state () did, since the state may beat
the messages to the destination, or, in many cases, there may be no state at all.
Whatever piece arrives last, eventually rollback_phase () is called,
resulting in a virtual time acknowledgement being sent to node 1 and the
phase limit of the process on node 2 being raised to the next virtual time to be
shipped (to 1350, in the example).

A[1000,+oo) A[1000,+oo)

Node 1 Node 2

Figure 13-7: Time 1100 Has Been Migrated

Figure 13-7 shows the situation, now. Only one virtual time remains to be
shipped, and it consists of two input messages at time 1350. The procedure for
shipping them is as above, and the result is seen in Figure 13-8.

Node 1 Node 2

Figure 13-8: Time 1350 Has Been Migrated

Now, when rollback_p ha s e () is called at node 2, instead of calling
send vtime_done (), it calls send_phasedone 0 . rollback_phase() can
tell that all virtual times have been moved because the phase limit of the

95

I
migration has caught up to the phase end of the migrating process. When 3
node 1 gets the phase done message, it removes the migrating process' OCB
from its queue of migrating processes, calls nukocb () to dispose of it, and
decrements its count of processes to migrate. If there are any more processes Uin its migration queue, it calls sendocb from q () to start up the migrationof the next process. 3

U
3
I
3
I
a
3
I
3

I
I
3
3

96

Chapter 14: Dynamic Creation and Destruction of Objects

TWOS is able to dynamically create and destroy objects, as discussed in
Section 4.5 of the TWOS User's Manual. Dynamic object creation is
accomplished in TWOS the newObj () system call. newObj () works by
sending a special creation message to the object to be created. This message
causes the object's data structures to be created, sets the object's type
appropriately, and runs the object's initialization section. The dynamic create
message contains a virtual receive time, which is the creation time for the
object; a name for the new object; and an object type, which must be one of
those defined by the user in the simulation source code. (TWOS does not
allow dynamic creation of object types.) The user need not, and, indeed,
cannot specify the node on which the object will be created. Instead, TWOS
chooses a node based on load information available to the system.

This method of dynamic creation has an obvious complexity. The object is
created by delivering a message, but there would not seem to be anywhere to
deliver the message until the object is created. The problem is solved by the
way TWOS handles messages sent to nonexistent objects. The need to handle
messages for nonexistent objects arises not only from this problem, but also
from assumptions TWOS must make about the order of message generation
and delivery.

There are two time-related issues concerning message delivery and dynamic
object creation. First, the virtual send and receive times of the dynamic
creation message and some other message sent to the created object may cause
complexity. At virtual time 100, process A can send an event message to
object C to be received at virtual time 200, even though object C does not exist
at virtual time 100. If process B creates object C at virtual time 150, process A's
message will be normally delivered. If object C is not created by virtual time
200, then process A's event message is in error. In either case, TWOS must be
able to save this event message until the system can determine whether
object C will be created in time to handle it.

The second issue relates to real time ordering of events. Consider another
example. Process X creates object Y at virtual time 3000. Process W sends an
event message to object Y with a send time of 3500 and a receive time of 4000.
In a normal sequential simulation, process X's event will definitely be
processed before process W's, so object Y will be present to receive the event
message sent at time 3500. In TWOS, however, optimistic execution on
different nodes may cause process W to send the message to Y earlier in real
time than process X creates Y. TWOS must be able to save this event message
and eventually deliver it to Y. An even simpler version of the problem can
arise, when, in a single event, one process creates a new object and sends it an
event message for some virtual time after the virtual creation time. TWOS

97

m
does not guarantee ordered message delivery at the low level, so the event
message may be delivered before the creation message. 3
TWOS deals with the problem of delivE.:ing messages to nonexistent objects
by taking the philosophical position that there are no nonexistent objects. All
nameable objects exist, in an abstract sense. Some of them have internal
machine representations (as one or more processes), some are only abstratt.
Any object for which the user requested creation must, of course, have a U
physical representation. Additionally, any object t',,t the user sent a message
to must have a physical representation. Whenever a message must be
delivered to an object that has no process representing it, TWOS creates such
a process.

A process created for this reason is called a null process. The major activity of 3
null processes is queueing incoming messages. Null processes do schedule
events, largely to make their internal handling similar to normal processes',
but these events do no work, and are called null events. Null processes
essentially loiter around waiting for a dynamic creation message to arrive.
When one does, the null process is converted into an object of the type
specified in the creation message. Its initialization section is run and the
object becomes ready to handle normal event messages. If any are already
queued, they may have run null events before the create message arrived, but 3
the creation will roll the null events back and re-execute them after the object
has been properly created.

In some cases, a null process may be created by another process running
optimistically down a path that will be later rolled back. Due to premature
use of data, a process can create a garbage process name as the receiver of a
message. TWOS has no way of distinguishing such a message from a
legitimate message to an object not yet created, so the message must be
delivered. A null object with the garbage name is created and the message is I
stored in its input queue. Eventually, the sending object will roll back and the
message will be cancelled. TWOS could then free the memory used by the
null object.

Bugs in a simulation can cause committed messages to be sent to null objects.
For instance, the user may incorrectly copy the name of a destination object 3
for a message into the send request. In such cases, the misnamed object will
be created and the message delivered. The commitment protocol will
eventually notice that a committed event message has been sent to a null I
object. TWOS will then flag the error and halt the simulation so that the user
can try to find the bug. 3
The most normal case, however, is that null objects are fleetingly created by
the arrival of dynamic creation messages. On arrival, the dynamic creation
message is put in the input queue of the new null process. The null object n
will be scheduled once the virtual time of the creation message becomes the

98

U

earliest unprocessed time for any process on the local node. Once scheduled,
the null process will change its type to the type specified in the creation
message and run its initialization section. Then it may go on to run normal
events, like any other TWOS process.

Dynamic destruction of objects has some of the same complexities.
Destruction is performed by sending an object a dynamic destruction message.
Like any other user-generated TWOS message, this message is subject to
cancellation until it is committed. Thus, TWOS must not take any
irreversible action based on this destruction message until it is sure that the
message will not be cancelled. Before the commit point is reached, the effect
of a dynamic destruction message is to change the type of the process
receiving it back to null. Any event messages received for times later than
the destruction generate null events, just as. if the object had never been
created. If the destruction is committed, and there are no later input messages
queued for the destroyed object, much of the storage it occupies could be freed.
Only enough storage to hold statistics for the destroyed object need be kept.

TWOS permits an object to be dynamically created at a given virtual time, to
run an event at that virtual time, and to be dynamically destroyed at that
virtual time. To support this feature, TWOS must always ensure that
dynamic creation messages for a given object at a given virtual time are
queued before either event messages or dynamic destruction messages for the
same time and object. In addition, the event handling code must be aware
that running a dynamic creation at a given virtual time does not give the
initialization section of the code access to event messages for that time.
Instead, those messages are presented to the event section of the object, as a
new event, once initialization is complete. Similar statements apply to the
relationship between event messages and dynamic destruction messages.

TWOS permits multiple dynamic creations of an object, provided they are all
of the same type. (Additionally, it is legal to create an object as one type,
dynamically destroy it, then create it as another type.) Only the first creation
of a given type will cause that type's initialization section to be run for the
object.

The remainder of this chapter will discuss details of how dynamic creation
and destruction of objects works in TWOS.

newObj () behaves much like schedule 0, which was discussed in Chapter 3.
newObj () makes simple error checks, performs some timing routines, then
uses switch-back () to call sv create (). sv create () allocates and dears
a message buffer, then sets it up as a DYNCRMSG. It calls dispatch () to deliver
the message. dispatch() and subsequent routines treat the DYNCRMSG
message just like an event message, giving it similar priority and handling.
Only when the scheduler is about to start an event for it does the path

99

significantly diverge from that of an event message, so the rest of that path U
will not be discussed here.

ob jhead () is where the path of a dynamic creation message diverges from U
that of an event message. o b j he ad () checks the type of message it is
handling early on. If the message is a DYNCRMSG, objhead () calls
ChangeType (), which extracts the character string type provided by the user
from the message and calls findobjecttype () to get the local pointer into
the type table.,

The TWOS type table consists of one entry for each user defined type, plus a
special entry for the null type and a special entry for the STDOUT type. Each
entry has a pointer to its string name, pointers to the various entry points for
the type, the size of the type's state, and some pointers used for type
initialization and user library support. f in -d_object_type () merely does a
simple comparison of the string the user provided to the string pointed to by
each type table entry and returns a pointer to the matching entry.
ChangeType () compares that pointer to the existing type pointer and returns 3
-1 if they match. Otherwise, the p.;nter to the type table entry is returned.

objhead () copies the new type pointer into the OCB's type pointer. If -1 is 3
returned, it copies in the type from the previous state, instead, and saves a
record that -1 was returned. objhead () goes on with its normal activities,
but, instead of running the event section for this object, it runs the
initialization section, unless -1 was returned by ChangeType (). In that case,
the object has just received a create message of a duplicate type, which causes
a dummy initialization section to be run. Running the dummy initialization
section allows the duplicate create to follow the normal path of a creationwithout running the initialization section twice.

If an object receives multiple dynamic creation messages of the same type at
the same virtual time, TWOS will not flag an error, and will run the
initialization section of the object only for the first such creation message. 3
However, TWOS will pass through objhead () once for each dynamic
creation message. 3
TWOS takes no further special action for a dynamic creation message until
commitment time. (For complete details on how commitment works, see
Chapter 8.) When committing a message in a process' input queue, I
objpast () checks to see if the message is a create message. Both dynamic
creation messages (DYNCRMSG) and static creation messages sent from the
configuration file (CMSG) are treated the same, here. An OCB variable called 3
crcount is incremented w- -!n a create message is seen by commitment. If
this variable is above 0 when a creation is found, before incrementing it
objpast () calls find_object type () using the creation message's type. If I
the type matches the type in the OCB, then this is simply a duplicate create

U
100 3

message that should be ignored. c rcount is not incremented for such
messages, and they are fossil collected.

Commitment time is also when TWOS detects messages improperly sent by
the user to objects that were never created. Whenever an event message is to
be committed, if the crcount field for the process committing it is less than 1
then it was performed by a null object. TWOS prints an error message and
traps to tester.

crcount was originally envisioned as a counter, but it has become more of a
flag, in practice. It should always be either zero (if the object hasn't been
created or was destroyed) or one (if the object has been created and not yet
destrbyed.) In the case of multiple legal creations for a single object, crcount
will not be incremented above 1.

As mentioned earlier, TWOS must ensure that a representation of an object is
already in place when any message, including a dynamic creation message,
needs to be delivered. Ensuring the existence of a null object to receive a
message, if no representation yet exists, is the responsibility of the phase
location code, which is fully described in Chapter 17. To cover only the
directly relevant parts of the phase location code, when a process' home node
receives a request for the process' location, but the home node does not know
anything about the object that the phase is part of, the home node creates the
object with type null. This action is performed in a routine called
ServiceHLRequest (). This routine calls MakeObject () to create a null
object of the proper name. Ideally, Make Ob j e c t () would use load
information (as described in Chapter 11) to determine where to put the object.
In the existing implementation, MakeObject () always puts the object on its
home node. Thus, any dynamically created object will always be located on its
home node. This choice can lead to heavy overloading of nodes if dynamic
creation is used frequently and the hashing algorithm for matching object
names to home nodes gives a poor selection of nodes. This problem has
never been detected, in practice.

Dynamic destruction in TWOS is a simpler process than dynamic creation.
de lob j () is the system call to delete an object. It follows a path similar to
that of newcbj (), calling svdestroy() through switchback (), which in
turn formats a DYNDSMSG. In objhead ,a DYNDSMSG is handled by changing
the object type to null and running a routine called dummy_dest roy (),
whose main purpose is compatibility with normal event handling. In
ob jpast (), during fossil coilection, a check is made to ensure that the destroy
message was sent to an object that had been created, by looking at the process'
crcount field. If that value is not zero or less, then crcount is decremented.

In principle, a committed destroyed process could be totally removed from
the system. However, we need to save statistics associated with that process
(see Chapter 22) to permit proper balancing of statistics after the run.

101

U
Attempts have been made to reclaim some of the memory used by suchI
processes. None of these attempts have produced completely correct results,I
yet, so they are not incduded in the compiled code. U

I
I
I
I
I
U

I
3

I

I
102 1

IU

II

Chapter 15: Throttling Code

3 TWOS relies on optimistic execution for synchronization and speedup.
There is evidence to suggest that over-optimism in Time Warp simulations
can lead to poor performance. In response to this evidence, we have
experimented with code to limit the optimism of TWOS, in the hopes of
improving performance. This chapter does not discuss the results of those
experiments, but only the code implemented for. them. Throttling is not used
by default, in TWOS, but can be turned on by the user from the configuration
file, if desired. At the moment, none of the experimental throttling methods3 described here are regarded as sufficiently satisfactory to use by default.

TWOS can throttle optimism in six different ways, but only one method can
be used during a single run. The method can be set from the configuration
file. The six methods are

1). Output message throttling - Do not permit processes to execute if
they produce too many output messages.

2). Event Time Throttling - Do not permit processes to execute if they
have too much outstanding uncommitted event time, compared to
the event time they have recently committed.

3). Dynamic Window Throttling - Do not permit processes to execute if
the virtual times of their events are more than a varying amount of
virtual time beyond the last computed GVT, where the varying
amount depends on the difference between the last two values of
GVT.I 4) Event Count Throttling - Do not permit processes to execute if they

have more outstanding uncommitted events than some constant
* factor.

5). Rollback Throttling - Do not permit processes on a particular node
to execute if that node has rolled back too much work compared to
the amount of work it committed during the last load management
interval. (Amount of work is measured in real time, not count of
events, for this option.)

6). Static Window Throttling - Do not permit processes to execute if the
virtual times of their events are more than a single set amount of
virtual time beyond the last computed GVT.

In all cases, the decision of whether to throttle is taken in one place in the
operating system, while code supporting the decision making process is
somewhere else. This chapter will cover all code associated with throttling.

1
103U

!
U

The decision of whether or not an event should be run is made in
loadob j () . (See Chapter 4 for other details of loadob j () -) If throttling
has been enabled for this run, the type of throttling chosen is checked. For I
each type, some simple comparison is made, either looking at variables
already set up, or calling a routine to perform some calculations and checking
the return value. If the option in force determines that an event is not to be U
run, blockObjectt is set to 1. If the blocked event is set to run at GVT, then
this decision is ignored, as events running at GVT are always correct and
should always be run. Otherwise, the process is marked as blocked and I
load obj () returns to dispatch (), which checks the next process in the
scheduler queue to see if it can run its event.

For output message throttling, loadobj () calls countOutputMsgs (), which
simply counts how many messages are stored in the process' output queue. If
the number is lower than a value set from the configuration file, then the I
event can execute. Otherwise, it cannot. This method has no real chance of
working well unless aggressive cancellation is used, instead of lazy, as a
process that has run far ahead and generated many output messages before i
rolling back will rarely get to run, even if it is behaving properly now. If
aggressive cancella'ion is used, however, then information about how much
this process has annoyed its neighbors is lost and cannot be used for throttling U
purposes.

For event time throttling, the process' OCB is checked to see if the amount of I
time it is permitted to spend executing events is less than or equal to zero. If
it is, then that process cannot run an event. This field is reset in ob jpast () ,
after all fossil collection has been done. objpast () keeps track of how much
event time was committed during this fossil collection cycle for this process.
It then counts up how much time all uncommitted events for that process
take up. The amount of time committed is multiplied by a factor set from the
configuration file, and another settable factor is added. Then the amount of
uncommitted time is subtracted. The result (which could be positive, 3
negative, or zero) is how much time the process is permitted to spend
running events before the next fossil collection cycle starts.

This value is adjusted during the cycle. Whenever an event finishes
executing, the amount of time it spent is subtracted from the allocation. On
the other hand, whenever an event rolls back, its amount of time is added to
the allocation.

Dynamic window throttling compares the simulation time field of the virtual 3
time of the event to be run to a dynamic window simulation time. If the
event's time is less than the window time, the event is not throttled. The
dynamic window time is readjusted during each GVT cycle, in gvtupdate (). 3
gvtupdate (), once it has determined the new GVT, subtracts the simulation
time of the previous GVT from the simulation time of the new GVT. If the

104 I

Id
difference is not zero, the difference is multiplied by a factor set from the
configuration file and added into the new GVT simulation time. The result
is the latest time at which an event can execute before the next GVTcomputation completes. If no GVT progress has been made, the window isleft at the same value as it had in the last cycle.

Only the simulation time field of virtual times is used by the dynamic
windowing method. Applying the method to all three fields of virtual time
is not really practical, as not all applications use the extra fields, and not all ofthose using the fields use them in the same way. Thus, the utility of thismethod is somewhat limited.

U Event throttling counts the number of uncommitted events for a process and
compares the count to a constant factor. If the count is higher than the factor,
the request. ' event cannot be run. objpast () calls eventsBeyondGVT ()
when this thrL -ling method is in use to count the number of events for the
process. A more sophisticated dynamic version of this method was tried
earlier, similar to the event time throttling method, but with counts of events
instead of totals of event times. Some of that code still exists in the system.

Rollback throttling always blocks all or no events on a node during a given
load management cycle. (Except, of course, that events at GVT always run.)
After calculating the node's utilization in !.oadStart () (see Chapter 11 for
details on this routine), that utilization is compared to the proportion of time
spent on work that was rolled back. If more time was spent on work rolled
back than on work committed, the blocking flag is set true. This option, as
currently implemented, is rather stupid, as it will block events far too often.
There should be some factor multiplied by the good utilization before
comparison. Adding this factor would be simple, but has not yet been done3 because this method showed little promise and inspired little confidence.

Static window throttling is similar to dynamic window throttling, but instead
of recalculating a window every GVT cycle, a constant window value is added
to GVT on each comparison and compared to the time of the event. (An
obvious optimization would be to make the addition once at GVT
computation time.) Like dynamic window throttling, static window
throttling only uses the simulation time field of virtual time, limiting its
utility for certain applications. It would be easier to extend static windowing
to use all three fields than it would be to extend dynamic windowing. Thismethod can only work if users are willing and able to determine a good staticwindow values themselves for each of their applications.

1U

105.I

B
U

I!
I

Ii

II

106II

1

Cchapter 16: Critical Path Computation

TWOS is able to compute the critical path of a simulation on the fly, as the
simulation is running. The critical path computation cannot be completed
until the simulation ends, so no critical path information is printed out until

Sthen. Once the simulation ends, TWOS computes the critical path and writes
it into a file called CRITPATH. The TWOS User's Manual, section 7.5,describes how to request the critical path and use the resulting data.

Critical path computation has a rather high overhead, especially in memory
usage, so TWOS does not compute the critical path by default. Even when the3critical path computation facility is not in use, however, TWOS will print out
an estimate of the length of the critical path. This estimate will only be
correct, though, if dynamic load management was turned off and aggressive
cancellation was used instead of lazy cancellation, due to inability of the
critical path mechanism to function properly in the face of these features.
Any other form of phase decomposition (see Chapter 12) can also adversely
affect the correctness of this estimate.

When requested, the critical path will be produced, generally at the cost of a
substantially slower run. (The slowdown occurs only in overhead, not in
user code, so the length of the critical path itself is not affected by this
slowdown.) In the existing system, TWOS does not have enough memory to
compute the critical path for many simulations, in which case TWOS willrun out of memory and halt. As mentioned above, the critical path cannot
yet be correctly calculated if lazy cancellation or dynamic load management is
used, so TWOS automatically turns off those features when the critical path
computation feature is turned on.

3 The critical path computation facility relies on the concept of EPT (event
processing time), as developed by Tapas Som [Wieland 921. This chapter will
not attempt to explain that concept, beyond stating that the EPT of an event is
the earliest possible tim, at which that event could have been correctly
processed, ignoring supercritical effects [Reiher 911. TWOS can calculate EPTs
for all events and tag all messages with EPTs. At the end of the run, the event
with the largest EPT is the last event in the critical path. By saving
information about what events caused other events, TWOS can then move
backwards along the critical path, identifying each critical path event alongthe way. Certain properties of EPTs permit some pruning of the event set
before the computation completes.

* The internals support for critical path computation falls roughly into three
sections. First, code is scattered throughout the kernel to support the
computation of each event's EPT. l- ,d, there is code in the commitment
mechanism for determining which information need not be saved for critical
path computation. Third, there is code run at the end of the simulation to

I
107I

generate the critical path. This final section of the critical path code is by far
the largest portion of the code.

The code scattered throughout the kernel is largely intended to compute EPT. 3
In order to properly compute an event's EPT, some timings must be taken.
In loadstatebuffer (0 , the EPT for an event is initialized to the EFT of the
last event for the process. The one exception is for creation messages, for
which there is no previous state. In this case, the EPT is initialized to the EPT
of the creation message. In messagevector (), the EPT contributions of the
message or messages causing the event are compared to the state EPT, and the i
largest one is selected as the initial EPT for the event.

Most of the Lode for calculating EPT consists of a few lines duplicated in many 3
places. Any place in which control passes from the user event to the
operating system has a number of lines of timing code, some of which are for
EPT computation purposes. schedule () is one such place, and as good an I
example as any. After making a system call to read the clock (which is
hardware dependent), a variable called objectend_t ime is set to the current
clock value, object_start time was set to the time when the event last
resumed execution, so subtracting o b j e c t _ s t a r t t time from
objectendtime gives the length of time this event has been executing
since it started or last returned from an interruption. That time can be added I
into the current estimate of the event's EPT, which is stored in its state.
(object_starttime is reset every time the event is about to restart
execution; the resetting is done in the main loop of TWOS.)

The second part of the critical path code is associated with commitment. (See
Chapter 8 for a full discussion of commitment.) Not all states and messages I
can be fossil collected when GVT passes their characteristic virtual time, if
critical path computation is turned on. TWOS uses those states and messages
to trace the critical path backwards at the end of the run. However, some
states and messages can be pruned before the end of the run, for reasons
described in [Wieland 921. In addition, the critical path computation facility
does not really require the full state and message in order to perform its work,
so some of the memory used up by items saved solely for critical pathcomputation can be freed. 3
In ob jpast (), where normally a state would be destroyed when committed,
the critical path code instead calls truncateState (). truncateState ()
releases all dynamic memory segments associated with the state, and its
address table. Then truncateState () creates a special truncated state data
structure and copies all information needed for critical path computation into
that data structure. nqTruncateState () is called to put the special truncated
state data structure into the process' queue of such truncated states, then the
state itself is removed from the state queue and destroyed.

108

!I

Generally, only one of the events that caused the event whose state was

truncated could possibly have caused this event to be on the critical path (if it
is). Only the event with the highest input EPT can possibly participate with
this event on the critical path. (For an explanation of why, see [Wieland 92].)
Therefore, truncateState () next calls informNonCritPredecessors () to
tell all the other predecessor events that they did not cause this event to be on
the critical path.

informNonCritPredecessors () checks the EPT of the previous state and
the EPT of all input messages that caused this event. The previous state will
have been truncated already, so informNonCritPredecessors () looks in
the truncated state queue for it. Its EPT is then checked against the EPT of all
input messages in .the bundle for this event. (A bundle of messages is a set of
event messages for the same process at the same virtual time that will
collectively cause a single event at that process.) If any of these messages has a
larger EPT than the previous truncated state, then that message is chosen,rather than the state.

After all messages have been examined, informNonCritPredecessors ()
sends out system messages to the processes owning all the causing events
except the chosen item. If the previous state does not make the maximum
EPT contribution, its state field called result ingEvents is decremented.
This field is set to one for all states, and incremented once for each message
sent by the event creating the state. If this decrementation brings this field
down to zero, then this state is definitely not on the critical path, and
nonCritEvent () is called for it.

n on C r i t E v e n t () finds its own previous state and decrements its
resultingEvents field, as well as informing the events caused by any inputI messages from this event that this event is non-critical. Those receiving
events will decrement their states' resultingEvents fields, as well. The
state is not yet fossil collected, though it need not be saved any longer. The
fossil collection will take place in objpast (), in order to centralize all forms
of fossil collection.

informNonCritPredecessors () then must inform any events that sent it
input messages that did not cause this event to be on the critical path. It calls
nonCritPathMsg () for each such message. nonCritPathMsg () sets up a
system message of type CRITRM. nonCritPathMsg () then calls
GetLocat ion () to find the location of the sender of the message that did not
cause this event to be on the critical path. If the loczrtion information is
available locally, and the process is local, successorNotOnCP () is called, to
avoid sending a system message to the same node. If the information is
available locally, but the process is not local, then sy s ms g () is used to send it.
If the information is not available locally, then FindObject () is called, with
finishNonCritPathMsg() as one of its parameters. (See Chapter 17 for

109

I

U
complete descriptions of the behavior of G e tLocat ion () and
FindObject ().) When finishNonCritPathMsg () is eventually called, it u
will in turn send the system message.

successorNotOnCP () will eventually be called for the process that sent this
message, whether directly from nonCritPathMsg () or as a result of the
receipt of the system message. This routine finds the state for the event that
sent the message (which may or may not have been truncated, by this point) U
and decrements its resultingEvents field. If that field goes to zero, then
nonCritEvent () will be called for this state, as well, and will behave just as
described above.

Returning to the fossil collection procedures of objpast (), after all states
have been examined for truncation, all truncated states are examined to see if
they have been fully removed from critical path consideration. Any state
whose resultingEvents field is zero is not on the critical path, and has so
informed all of its predecessors. (Its successors already know - they were the
ones informing it that it wasn't on the critical path.) Such a truncated state isremoved from the queue and destroyed. n

Input messages are also preserved by the critical path facility, to serve as
backward pointers to the cause of events. Like states, committed input
messages being saved for critical path computation are truncated, chopping
off their data section. Unlike states, however, the entire message header is
preserved, to facilitate handling of the truncated message. With the entire
message header in place, the message can be left in the normal input queue,
rather than requiring a truncated input message queue, thus simplifying
much of the handling code. Truncated messages can cause fragmentation, so
a method to limit that fragmentation would be valuable. Time did not
permit adding such a feature, which would work along the same lines as the
special pool of contiguous memory for allocating truncated states.

When o b j p a s t () examines an input message, it checks to see if the
message's flag indicates that it is a NONCRITMSG. All messages start off with
this flag value turned off. It is turned on when it is determined that this
message did not cause the resulting event to be on the critical path. (That
determination is made when either this message proves not to have the I
highest EPT contribution for the event, or when the event is determined not
to be on the critical path.) If NONCRITMSG is set, then delimsg () is called to
fossil collect the message. If NONCRI TMSG is not set, then U
truncateMessage () is called to chop off the message's data part.

The third major section of code dealing with critical path computation
actually calculates the critical path. It is called from gvtupdate () when the
simulation ends, only if the critical path calculation has been requested by the
user. The primal function for this phase of critical path calculation is U
calculateCritPath).

110 1
U,

calculateCritPath () is called on each node at the end of the run. One of
those nodes is the critical path master, and takes slightly different actions than
every other node. Other nodes simply look through their scheduler queue
for the OCB with the final event with the largest EPT. This event is the local
event that logically had to be run latest of all those on this node. Globally,
such an event over all processors must be the final event on the critical path,
as no other event necessarily had to finish as late as that one. Once the local
event is found, a system message is sent to the critical path master with the
local contribution.

The critical path master calculates its own contribution and waits for all other
nodes' contributions to arrive. As each arrives, checkCritPath () is called
on the critical path master node. checkCritPath () compares the incoming
contribution to all contributions seen so far. If this node's event has the
highest EPT seen so far, the EPT, object name, and its node are saved. Once all
contributions arrive, startCritPath () is called.

startCritPath () checks to see which node has the last event on the critical
path, that event being the one chosen by checkCritPath () from all nodes'
local EPT maxima. If the event is on the critical path master node, a system
message is dummied up and takeCritStep 0 is called.

takeCritStep () takes one step backwards along the critical path. It finds the
required process in the scheduler queue, and the state within that process.
(There is a bug in this code if the object with the event being sought has two
phases on this node, but that situation shouldn't arise when the critical path
is being computed, as all non-user requested phase splitting is suppressed
when the critical path is being computed, and users typically do not request
phase decomposition on their own.) Once that state is found, makeCr it () is
called. makeCrit () sets a bit in the state's flag to indicate that it is on the
critical path and searches for the input item that caused it to become critical.
If an input message caused this event to be on the critical path, a system
message of type CRITSTEP is set up for the process that sent the input
message. GetLocation () (and possibly FindObject 0 and finishCrit ())
are used to locate the process. If the process is local, takeCritStep () is called
recursively. If the process is non-local, the system message is sent. Upon
receipt, that message will cause takeCritStep () to be called.

I If the critical path event is on the critical path due to the previous state, then
makeCrit () is called recursively for that event.

I Termination of this process occurs when the sending process for a message
proves to be "TW", indicating that the message was sent from the
configuration file. At this point, o u t p u t C r i t P a t h () is called.
o Out put C r i t P a t h () runs through all the processes on the local node,
printing out a critical path record for each state they have marked as aI

111I

U

CRITSTATE. Then this node calls endCritComputation () to inform all 3
other nodes that the critical path has been completely found.
endCritComputation () sends a system message to all other nodes of type
C RITEND. Receipt of this message causes each of those nodes to call U
outputCritPath () to print out their own local portion of the critical path.

The critical path log produced as a result is not ordered, so a postprocessing i

tool must be used to order it. (Use of this tool is covered in the TWOS User's
Manual, Section 7.5.) i

The critical path code could be changed to write out the critical path events as
each state is marked as a CRITSTATE, rather than waiting until the path has
been traversed. Time did not permit this change. Note that the node that i
detects the first event on the critical path would still have to send system
messages to all other nodes, at this point, to ensure clean termination of the
system. Otherwise, those nodes would hang waiting further critical path I
computation activities.

The critical path computation code could use some cleaning up. It works 3
correctly for most cases, unless it runs out of memory. Further work could
lessen its memory usage. Also, the code contains a number of paths that
should never be taken, left over from earlier implementations. These should U
be removed. Time did not permit us to either improve or clean up the
critical path facility any further. 3

1

p
I
U
U
U
I
I

112 I

B

I Chapter 17: Phase Location

Object names in TWOS are character strings assigned by the user. Whenever
the user creates an object, either statically from the configuration file or
dynamically in an event, the user or his code must specify a character string
name to assign to that object. All messages sent to that object are addressed
with that name. Each object must have a unique name, a restriction that is
enforced by TWOS at the commitment of virtual creation time for the
process.

When a process sends a message to another process, addressed only with this
character string name, TWOS must find the node hosting the process and the
address of the object control block on that node.. Any process may send a
message to any other process at any time, without setting up any channel to
that process. The destination process may be on the same node or a different
node. Moreover, since TWOS attempts to conceal from its users how many
nodes are being used for a run, and even that the run is being done in
parallel, rather than sequentially, the user's application code has no
responsibility for addressing messages, other than specifying the name of the
destination process.

3 A further complexity is that TWOS processes can move from node to node.
This migration is transparent to user code, so the operating system must3 handle all problems of routing messages to moving processes.

Another difficulty is purely internal. As described in Chapter 12, TWOS
processes are not objects, but phases. Generally speaking, the decomposition
of objects into phases is transparent to the user, so, again, the operating
system must take complete responsibility for routing a message not just to the3 correct object, but to the process handling the correct phase of that object.

TWOS is intended to be a scalable system, so solutions to this problem must
work well for large numbers of nodes, large numbers of processes, and large
numbers of migrations.

The basic method used to locate processes in TWOS relies on a per-node cache
to respond to most requests. This cache keeps the location of the processes
recently requested by the node, with a least recently used replacement

Salgorithm. Each cache entry contains the identity of a process, its location,
and cache replacement information. A process' identity consists of the
character string name of an object and a virtual time iihdicating which phase3of that object is represented by the process. Since any given virtual time is the
virtual phase begin time of only one phase of an object (see Chapter 12), the
virtual time portion of the process identity is the phase's begin time. The
process location also consists of two fields. The first is the node number of
the process. If that node number is not the same as the local node number,

1 113

I

U
the second field is not used. If, however, the cache entry indicates that the
process in question is local, the second field of the location part of the cacheentry contains a pointer to the process' phase control block.

However, sooner or later a node will receive a process location request that
cannot be satisfied from its cache. In such cases, the node must have some
other means of locating the process. The method used by TWOS to reliably
find processes is to assign each process a home node. That node has I
permanent responsibility for keeping track of the location of the process.
Given the character string name of the process, any node can immediately
determine its home node by applying a hashing function to the name. The
hashing function has been chosen to spread out home node responsibilitiesin a reasonable way. 3
All phases of a single object have the same home node. Whenever an object
is split into phases, the home node must be notified of the split so that itknows that the object is composed of multiple processes. Whenever a process e
moves, the home node must be notified of the new location of the object.

GetLocation () is the basic operating system routine for finding processes. It I
first calls FindInCache () to look in the local node's cache. The cache is
accessed via hashing the object's name to one of the hash buckets that make 3
up the cache. That bucket contains a linked list of entries with the same hash
value. The list is reordered on accesses to bring frequently accessed items near
the front of the list. If FindInCache () finds the entry, GetLocation() 3
returns a pointer to the cache entry.

Should the process' entry not be in the cache, the next method used is to look
through the local scheduler queue for it. FindInSchedQueue () implements
this search. FindInSchedQueue () runs through all scheduler queue entries
comparing the requested process' name to the name in the OCB; if a match is i
found, the time of the request is compared to the phase begin and end of the
scheduler queue entry. If FindInSchedQueue () succeeds, an entry is put into
the cache (using CacheReplace 0) and a pointer to that entry is returned. U
If the process does not have a cache entry and is not in the local scheduler
queue, there is one more set of local information to examine before U
GetLocat ion () gives up. GetLocation () hashes the object name to its
home node. (The hashing function here does not necessarily produce the
same results as the hashing to cache buckets described earlier.) If the home m
node is local, the local home list will contain correct location information for
the process. FindInHomeList () looks for it. 3
FindlnHomeList () uses a hashing structure similar to that of the cache, with
each hash bucket containing a linked list of entries. Searching for the entry
involves applying the hash function and traversing the linked list until the U
proper entry is found, or all entries have been examined.

114

I

If this node is the requested object's home node, Get Locat ion() expects
FindInHomeList () to find the appropriate entry. If FindInHomeList () does
not, then this is the first time any request for the object (not just the phase,
but the entire object) has reached the home node. This suggests that the
object does not yet exist, and must be dynamically created. (See Chapter 14.)
GetLocation () calls ChooseNode () to decide where to put the new object
(currently, always on the local node), and then MakeObject () to set up an
OCB and queues for it. Then AddToHomeList () is called to create the home
list entry for the object. Whether or not the object had to be created,
GetLocation () now has sufficient information to set up a cache entry for it,
so it calls CacheReplace () to do so, and returns the resulting cacd -inter.

But if the cache had no entry, the phase wasn't stored locally, anc this wasn't
the object's home node, then GetLocat ion () can do no more. It returns a
null pointer.

The code making the request now must decide how badly it wants to find the
phase, knowing that doing so will require sending an off-node message. A
further complexity is that the code making the request must be set up in such
a way that it can be suspended and resumed later when the message arrives,
as TWOS cannot afford to hang waiting for the message. In almost all cases,
the information must be obtained, no matter what, in which case
FindObject () is called.

FindObject () takes all the parameters of GetLocation (), plus a pointer to a
message, a pointer to a routine to be called when the process' location is
found, and a flag indicating whether the item stored in the pointer to the
message really is a message or not. (FindObject () can be called from a
numbe, of places, and what needs to be saved to resume execution may not
always be a message, though it most typically is.) FindObject () always
assumes that GetLocat ion () has already been tried, so it makes no attempt
to find the process locally. It sets up an ent'y in the pending list for theI request, instead. The pending list is a list of unfinished work awaiting the
arrival of object location information. All the information passed in to
FindObject () as parameters is stored in thepending list entry.

Generally speaking, if FindOb ject () is called, a system message is sent to the
home node requesting the location of the process. The local node then goes
on to do other work. However, in certain cases there may be many requests
for exactly the same piece of process location information. The first request is
queued in the pending list and a message will be sent off. However, when the
response to that message arrives, it can be used to -satisfy any number of
identical requests, so the second request for a particular piece of location
information merely causes an entry to be put into the pending list, using
AddToPendingList).

115

If the request is not for the same object at exactly the same virtual time, then n
a new message must be sent to the home node asking for the necessary
location information. This message is called a "home ask" message, and it 5
will be responded to with a "home answer". After using
AddToPendingList () to save the necessary information for dealing with the
home answer, F in dOb j e c t () hashes the name to the home node number I
and sends off a message to that node, of type HOMEASK. FindObject () then
return,

Routines that call FindOb ject () cannot expect to get their information
immediately. Since they typically need that information before proceeding,
when FindObject () returns they usually return themselves. While theirI
work has not been finished, they are assured that it will be eventually.
FindObject () must be used with care in cases where literally no system
activity can go on until the location information is available. As of yet, no I
such situation has arisen in the implementation of TWOS.

When the home ask message arrives at the home node, I
ServiceHLRequest () is called to handle it. ServiceHLRequest () calls
FindlnHomeList () to search its existing home list for the information. If the
information isn't found, then the object is dynamically created, just as I
described in the case where Get Locat ion () is called for a local home node.
In either case, the resulting location information is put in the home list and
made available to ServiceHLRequest (), which packages the information up I
in a system message of type HOMEANS to the node that needed the
information. No entry is made in the local cache, as this node has no reason
to believe its resident processes are especially interested in the process in
question. Home ask messages do not look in the home node's cache first, as
they know the correct information will be in the home list, but cannot be sure
it will be in the cache. Looking up information in the home list is no more
expensive than looking it up in the cache, so it is sensible to look where the
information is sure to be, first.

When the node that made the request for the location information receives
the HOMEANS message, it calls ObjectFound (). ObjectFound () first calls
FindInPendingList () to look for an entry matching the information in the
HOMEANS message. In some cases, the pending list entry might have already
been removed due to an earlier HOMEANS message, but most often it will still
be there.

Once the entry is found, ObjectFound() checks to see if the HOMEANS
message says that the requested process is local. Remembering that
Get Locat ion () already checked for this case, one might think that the
HOMEANS message could not possibly say that the process is local, but various
timing conditions arising from process migration (see Chapter 13) could lead
to this situation. In fact, the local node might still not have the process in its

116

scheduler queue, despite the home node indicating that it should be there. In
this case, the process is still on its way, but hasn't arrived. In this situation,
Objec tFound () removes the old entry from the pending list and calls
FindObject () again, more or less to delay until the process actually does
arrive. For especially slow migrations, a HOMEASK/HOMEANS pair might
bounce back and forth several times before the request can actually be passed
up-to the code that needed it.

More often, however, there is no problem with the home node's response, so
a new cache entry is made for it and RernoveFromPendingList () is called.
That routine not only pulls the pending list entry out of the pending list, but
also calls the routine that was supplied to F indOb j ect () as a restart point.
When RemoveFromPendingList () returns, ObjectFound () looks through
the pending list for any more entries this request satisfies and calls
RemoveFromPendingList () on them, too. A HOMEANS contains sufficient
information to identify all requests that involve the process in question, so a
single HOMEANS message may clear out entries generated for a large number of
HOMEASK messages. One implication of this ability to remove multipleI pending list entries with a single HOMEANS message is that ObjectFound ()
will often receive HOMEANS messages that no longer have, pending list entries.
Therefore, ObjectFound() does not regard failure to find a matching
pending list entry for a HOMEANS message as an error. Note that requests that
the sender cannot identify as identical may be able to be satisfied with a single3 HOMEANS message.

A typical calling sequence for phase location is that of d e 1 i v e r().
del i ve r (), covered in Chapter 3, handles user message delivery in a very
general way. It calls GetLocation (), and, if that routine returns the needed
information, uses it to ship the user message wherever it needs to go. If
GetLocation() returns null, deliver () might call

SendCacheInvalidate () (if this message came here from another node, to
make sure that node does not send any more messages for processs no longer
here), and then calls FindObject () with the message and a routine called
FinishDeliver () as two of its parameters. deliver () then exits. When
RemoveFromPendingList () handles the pending list request for this
message, it calls F in is hD e liver () with the message and the location.
FinishDeliver () is then able to enqueue the message locally (if the desired
process migrated in to the local node since the original request was made) or3 ship it to the node that does have the process, using sndmsg ().

This method of process location may store messages temporarily in a pending
list. Therefore, when the GVT algorithm is run, each node must also look for
the virtual times of messages in its pending list, as the lowest-time event in
the system could be represented by a message in that pending list. (SeeE Chapter 7 for further details.)

117Il

I

A certain amount of care is necessary to handle the home node of a migrating H
process. There are points in the migration protocol in which neither the
sending node nor the receiving node are capable of accepting messages for
that process. In such cases, the home node informs nodes trying to locate the
migrating process that it is at the destination ncdie. If messages are delivered
to that node before the process is ready to receive them there, the destination
node will simply disclaim information about the process, resulting in a
reconsultation of the home node. The home node -will again indicate that the
destination node holds the process, which the destination node may again I
deny. Sooner or later, however, the destination node has set up the incoming
process sufficiently to accept the incoming message.

Care must also be taken to clear the cache entries of the source node in a
migration. Before the migration, the entry not only shows the process as
being stored locally, but specifies a pointer to its process control block. If a I
message were delivered to the source node without clearing this cache entry
after the process is migrated, the process control block pointer from the cache
entry would point to freed memory. If TWOS attempts to use that pointer,
the system could crash. Therefore, the local cache entry is always cleared early
in a migration.

In certain cases, some of which were described above, nodes can determine
that other nodes have incorrect cache entries. When this happens,
sendCachelnvalidate () is used to force removal of a bad cache entry. This I
routine simply format a system message of type CACHE INVAL and sends it to
the node with the bad cache entry. The arrival of this message causes the
node to run RemoveFromCache (), a routine also used for locally generated
cache invalidations.

Temporal decomposition and process migration does not cause immediate I
clearing of incorrect cache entries for all nodes. Some nodes may preserve a
stale cache entry for a migrated process for quite a long time, even through
the end of the simulation. However, the stale cache entry will only persist I
until information is sent for that process to its old location. Then, when that
location forwards the message to the new location, a cache invalidation
message is also sent to the node with the stale entry, forcing it to reconsult the
home node before sending any further messages to the process.

The phase location cache is of limited size, so sometimes entries must be
removed even when there is no evidence that they are incorrect.
CacheReplace() is used, in such .ases. It calls ChoosePosition() toselect
an entry to remove. ChoosePosition () currently uses an LRU algorithm to
select an entry for removal. Whenever a cache entry is used, its replacement
field is set to a monotonically increasing, per-node counter's incremented
value. Therefore, the n most recently used entries have the n highest
replacement field values. In particular, the least recently used entry has the

118

lowest value. ChoosePos it ion () looks through all cache entries for this
lowest replacement value.

ChoosePosit ion ()'s search can be somewhat expensive, but it is rarely
necessary. A typical TWOS simulation might consist of 500 or more objects
spread across 32 or more nodes. For such cases, typical cache hit ratios on
process location requests exceed 99%, and sometimes exceed 99.9%. Most
simulations run under TWOS use objects that have substantial locality of
reference in their communications patterns. Moreover, many of the misses
are from cache initialization, before it has filled up with its maximum entries.
No searches for least recently used entries are made until all unused entries
are exhausted. Optimizations to this cache method are no doubt possible, but
the high hit ratios and modest cost of the existing algorithm have made
improvements to it a low priority.

119

I
I
I
I
I
I
II
I
I
I
I
I
I
I
I

I

120

Chapter 18: The Tester

The TWOS tester is a component of the operating system that serves two
purposes. First, it is a parser for reading configuration files. Second, it is a
debugger for finding operating system problems. This chapter will discuss the
tester's functions and describe how to make some basic changes to the fadlity.
It will not describe all of the tester commands and what each command does.
For a list of interesting tester commands, see Appendix H.

The heart of the tester code is in a routine called command (. This routine,
and several routines it calls, contain exceptionally dense, difficult code.
Fortunately, they almost never needs to be changed. (Only if a new data type
is to be added to the parser need command() be changed, or if the system
developer insists on fixing a couple of small, slightly annoying bugs in the
tester.) This manual will not cover command (), in detail.

comdtab. c contains the code that is more frequently revised. The tester is
essentially a command interpreter, and the operation that most frequently
must be performed is to add a new command. The next most frequent
operation is to slightly modify an existing command. Both of these
operations can be performed mostly within comdtab. c .comdtab. c consists
almost exclusively of data definitions used by command() as parser tables.
Adding a command to tester largely consists of altering these tables, and
changing a command largely consists of altering table entries.

The list of commands for tester is kept in an array called func de fs ([. Each
entry in this array consists of the command name, a short help message, a flag
indicating whether the command should be broadcast to all nodes or just

performed on the node tester is running on, the name of the TWOS routine
that executes the command, and an optional list of parameters. The first two
parameters are character strings. The command name-is written in caps, but
the command can be issued in any combination of capital and lower caseI letters. The help message (which shouldn't exceed four or five words) is also
a string in caps, but will appear in lower case when printed. The valid values
for the third parameter are 0 or BCAST. The next parameter is the name of the
function that implements the command. This function must be written
when a command is to be added, of course, but in most cases it is very
straightforward and can be modelled on an existing command. The
parameter list should consist of the addresses of variables that will hold the
command's parameter values.

I The function that is to be used must be declared before it can be used in the
func defs [I array. Since comdtab. c does not itself contain these functions,
the function should be declared as externals before the declaration of
func defs]. Any of the existing functions can be used as a model for this
external declaration.

121

U
I

The arguments of the command should be separately declared and then
entries should be made for each in the arg_defs [I array. If the entry is not
made here, the parameter will almost certainly not be passed correctly to the
function by command (). The format is rather simple. The first part of each
entry is a short help description, typically one or two words. The next part is
the tester data type of the argument. The third part is the address at which the I
argument is to be stored, which must match the address used in the
funcdefs[] definition.

Tester supports a limited number of data types, called INTEGER, REAL, HEX,

STRING, STIME, SYMBOL, and NAME. NAME and STRING are the same, except
that a NAME can be no more than 29 characters, while STRING can be of U
arbitrary length. INTEGER is a decimal integer, HEX a hex integer. REAL is a
real number in xxx.yyy format, not in floating point format. STIME is a
simulation time, which is essentially the same as a REAL. SYMBOL refers to a
limited set of defined symbols. The only ones currently defined are "CMSG",
"EMSG", and "GVTSYS". Minor changes to command () can be made to define
new tester data types, but the existing ones are sufficient for most purposes.

The steps in adding a command to tester, then, are

1. Add an entry to funcdefs [].

2. Declare the related function earlier in tester.

3. Declare the arguments (if any) in arg_defs sl.

4. Declare the arguments as static entries of their types earlier in tester.

5. Write the function that implements the command.

The tester is called in one of three ways. First, it is invoked at the beginning
of the run to read the configuration file. Second, when an error condition is U
detected by the operating system, tester is typically called to help diagnose that
condition. Third, the user can stop any run, once the configuration file has
been read and the run is underway, trapping to tester.

The first use of tester occurs towards the end of system initialization. The
tester is called by init command (), which in turn is called from a non-
looping portion of Main_Node ExecutionLoop (). This latter routine
contains TWOS' main loop (see Chapter 21), but also, contains much of the
initialization code for TWOS. Only node 0 calls init_command (), so node 0
will do the actual reading of the configuration file, parcelling out the
commands to the nodes that need them.

I
12

initcommand () opens the configuration file and then repetitively calls
command () to read a single command. As mentioned earlier, command () is

the heart of the tester. It calls get word () to read one word of a command,
which will initially call get line () to read in a full line to extract the word

from. in it command () has set up a file pointer for the configuration file,

which signals get_ line () to read the configuration file, rather than wait for

input from the console. command() will eventually get an entire command
and execute it. If the command is a broadcast command, it is sent to every

node. If it is not a broadcast command, execution starts on node zero. Certain
commands cause messages to be sent to other nodes, which may indirectly
cause other actions. For example, an object creation from the configuration
file is handled by node zero sending a CMSG message to the node that is to host
the new object. Once all commands from the configuration file have been
read and handled, initcommand () returns and the main loop goes on to
further system initialization tasks.

The second major use of the tester is to trap to a debugger when TWOS
detects an internal error. The tester is not called immediately for user errors
that might be rolled back later. Instead, the executing process' state is marked

I as in error and, if committed, an error is generated at that point. (See Chapter
8 for further details.) But when the operating system itself detects an
erroneous condition, the most common pattern in TWOS is to call
twerror (), which prints an error message, and then to call tester ().
tester() repeatedly calls command (), exiting when a variable called
hostinput waiting is set to zero. (One of the tester commands, "go", does
just that, permitting the programmer to restart a TWOS run after a call to
t eest er () .) Any node can call tester (), and one result of the call is that all
nodes will halt and await tester commands.

I The third major use of the tester is to permit a user to halt a TWOS run at any
point and examine the state of the system. This capability would only be of
use to those debugging the operating system, generally, but can be very
helpful for them. One of the actions of the main loop is to periodically check
for input from the console. If a carriage return comes from the console, then

Steste r () is called. Just as for calls to tester () from inside TW O S, all nodes
will be halted when t e s t e r () is called in this way. Each node periodically
checks, in the main loop, to see if some other node wants it to trap to the

* tester.

In certain cases, a TWOS node might erroneously enter an infinite loop, or
otherwise get into a non-halting situation where it will never again execute
the main loop. In such cases, a request to trap to the tester would be ignored
by such a node, as the main loop test for the request would never be

Sexamined. TWOS has one way out of such situations. Sending a control-C
signal from the console will always cause all nodes to halt and trap to the

123I

I
tester. (This trap is set up in BFMACH nint_args (), since the signal only
works on the Mach GP-1000 implementation of TWOS.) As currently
implemented, a given run can only be trapped in this way once. If a run is
trapped with this interrupt signal, then restarted, the next interrupt signal
will not properly trap to tester.

TWOS behaves differently during system initialization than at other times, so
it is almost certainly a mistake to issue tester commands normally used in the I
configuration file in the middle of the run, or to assume that methods used
for such commands will work well once the run has started. For example,
sending a CMSG to create an object after initialization has ended, instead of I
using the dynamic creation system outlined in Chapter 14, is likely to cause
problems. Changing various run time parameters, such as whether lazy or
aggressive cancellation is in use, after initialization is also likely to cause
errors. An obvious exception is the schedule command in tester, which
simply calls schedule () to send a message.

Tester commands can be issued to be executed at a particular simulation time.
Such commands can be issued from the configuration file, or at any time that
the system has trapped to tester, for whatever reason. This feature is intended I
to help in debugging TWOS capabilities, not for user purposes. Only tester
commands preceded by a node number or an asterisk (indicating that the
command is to be broadcast) can have a simulation time attached. The
simulation time is a second number before the command itself. Any
command preceded by a valid simulation time will be viewed as a command 3
for delayed execution. The command will be stored in a special command
queue, along with its simulation time, and will be executed once GVT passes
that time. Chapter 21 discusses details of how and when the commands are
removed from the command queue.

1I
I
I
U
I

124 I

Chapter 19: Event Logging

TWOS is able to maintain a log of all events performed during its run. This
log is primarily used for debugging purposes. The most common use is to
compare an event log for a correct run of a simulation to an event log for an
incorrect run of the same simulation. By finding the point of first divergence,
the programmer looking for the bug can get a pointer towards what might
have caused the error. The event log is used extensively by programmers
developing TWOS simulations to locate problems in determinism caused by
inadvertently breaking some rules of user behavior, or to detect inconsistent
results between the simulation running on two different hardware platforms,
usually caused by incompatibilities between the two platforms' underlying
hardware or software.

Event logging can run in one of two modes. Either it can simply produce an
entry for every committed event made during the run, or it can read in an
existing event log and check each committed event against that existing log
when the events are committed. In the former mode, a file called "evtlog.x",
where x is a node number, will be created for each node in the run. These
files must be merged to create a single event log; this merge can be easily
accomplished with standard UNIX tools. In the latter mode, the first
discrepancy will cause the system to trap to tester. (See Chapter 18 for details
of tester.)

If the checking mode is in use, then each object needs to have a special data
area attached. This data area is allocated and its address stored in the object's
OCB by code in c reat e pro c (), the routine used to set up a new object. The
entire log file is scanned for any entries related to this particular object, and
those entries are copied into a special temporary data area. This temporary
area must be very large, as it must have enough space for all events. Once the
temporary area has gotten all entries for this object, its true size is known. A
new chunk of memory of exactly that size is allocated, the event log entries
are copied from the temporary area to that correctly sized chunk, and the
object's evt log pointer is set to the address of that chunk.

The major body of the event logging code is in the commitment mechanism,
in objpast (). (See Chapter 8 for full details of commitment.) objpast ()
first checks to see if the event log has yet been opened, and opens it, if it has
not. If the event log is being produced, rather than checked, as each output
message bundle is committed, HOST_fprintf () is called to write an event
log entry for it. (An output message bundle is all messages sent by a particular
object from a single send time.)

If event checking is being performed, the number of messages in each output
bundle is checked against the reference log in the object's event log area. The
reference log is ordered by send time, and a pointer is maintained into it that

125

U

points at the next unmatched bundle. If the bundle about to be-committed
exactly matches the record for the next unmatched bundle in the reference
log, then the checking procedure moves on to the next bundle. If it does not,
either there is an extra bundle in the reference log, or this bundle being
considered isn't in the reference log, or the bundle being considered is in the
reference log, but has an improper count of output messages. An appropriate
error message is generated and tester is called.

Event logging has a rather high overhead, especially if event checking is being
performed, so event logging is not done, by default. In fact, the code is ifdefed
out of TWOS by default, requiring recompilation when it is to be used. For
many simulations, event checking will not work at all, as nodes do not have
sufficient memory to hold the entire event log. A truncated version of the °
event log can be read in, instead, if the error being chased occurs relatively
early in the simulation, but event checking will not provide much help if the
error occurs near the end of a lengthy simulation. A robust method of
allowing event checking on partial event logs with arbitrary start and end
times, and for arbitrary objects, has been proposed, but time has not permitted
its implementation.

IU
I
U
U
I
U
I
U
I

126 I

Chapter 20: I/0

TWOS is unable to use standard, pre-existing I/O capabilities of the machines
it runs on because output might need to be rolled back. TWOS handles this
problem by holding the writing of all output to its device until the output is
committed. In addition, .limitations of the existing platforms make I/O rather
difficult and expensive, which would artificially slow down simulations run
in parallel. TWOS tries to overcome some of these limitations by
implementing its own I/O.

TWOS permits users to open both read files and write files. Read/write files
are not currently permitted. Each file opened uses one slot in a table of static
size, for the entire course of the run. The parameter MAX TW FILES controls
the number of slots in this table, thus also defining the number of files that
TWOS may open at any time during the run. Additionally, each process has a
limit on the number of streams it can have open simultaneously. This limit
is defined by the parameter MAXTWSTREAMS. Both of these parameters can
only be changed by recompilation.

Each file has its own unique TWOS name, which must be bound to the name
of the file in the underlying operating system's file system. The configuration
file command get: f i 1 e performs this binding for input files, while the
configuration file command put: file performs this binding for output files,
as described in the TWOS User's Manual, Section 2.2.3. At most, a
combination of MAXTW .FILES getfile and put file commands are
permitted during a single run. get file causes the entire file to be read into
TWOS memory on all nodes, so reading very large files can have bad effects
on TWOS' performance. Having a local copy on all nodes is necessary
because the I/O channel to the disk copy is very slow and narrow, and
maintaining a copy of the file in the memory of only a few nodes might put
too heavy a burden on the hosting nodes.

put file behaves somewhat differently. It, too, uses up a slot in the table for
the name translation, but it does not have to allocate or use memory to hold
the data of the file. Instead, it creates an object of type STDOUT on node 0, with
the name of the file.

In addition, the user has access to the standard output through the
tw_printf () call, described in the TWOS User's Manual, Section 4.4.3.1.
Any data printed using this call will appear in a file called "STDOUT". Note
that objects of type STDOUT are not quite the same as objects that handle
standard out output. The remainder of this chapter will make the difference
clearer.

Files are opened in TWOS using the tw_ fopen () system call (see TWOS
User's Manual, Section 4.4.1 for details). Each object must perform its own

127

U

tw_f,.pen () call to access a file, so if every object needs to access the file, every I
object must perform a tw_fopen (). The various phases of a single object
inherit the file pointer from the t w_ f o p e n () from the previous phase, so
only one tw_ fopen () need be done per object, not one per phase. Each
process maintains its own pointer to the current position within the file, so
each object reads the file independently of all other objects. ,

The tw_fopen () call searches through the cable of all files for which get file
or putf ile commands have been executed, looking for the named file. If it is
found, and the requesting object has a stream slot open the file in question is
available and the user is given a pointer into the object's table of open
streams. This pointer can then be used in twfprintf () or tw_fscanf () U
calls, whichever is appropriate.

tw fscanf () finds the correct entry in the requesting object's stream table, 3
then tries to read data from the last position read in the file. The method of
reading is similar to that for normal UNIX scanf () calls, but only one item
can be read with twfscanf (). If the attempt was successful, I is returned. 0
is returned if the requested formatting could not be done properly, and EOF is
returned if the end of the file was reached. The other TWOS input calls work
analogously. U
tw_fprintf () works very differently. After performing some formatting
work on its arguments to put them into a single string of text, tw_,print f () I
calls tw_fputs () . twfputs () calls schedule () with a message consisting
of the string just produced, to be sent to the object with the name of this file.
The selector is assigned a unique number that is incremented each time I
twfputs () is called for a given file. Each object writing to the file has its
own such sequence number.

Thus, a request to tw_fpr.ntf () will result in a message being sent to a
special object for the requested file. That object was created by the putfile
command, and will be on node 0. It is an object of type STDOUT, and objects of U
that type receive special treatment. They are not considered for GVT
purposes, and they are never migrated by dynamic load management. More
directly to the point, a STDOUT object starts life with its SVT at positive U
infinity, and never rolls back, no matter how many messages arrive fo,
earlier times. As a result, such objects never schedule ever ts. Instead, their
input messages just sit in the input queue waiting for fos-,l collection at H
commitment time.

At commitment time, in ob jpast () (see Chapter 8 for full details), the first U
thing done for STDOUT objects is to call commit (). commit () runs through
the object's input queue, finding all messages that can be committed and
printing them out to the requested file in the underlying operating system's U
file system. These messages are then removed from the queue and destroyed.

128 3

The standard out object on each node works somewhat similarly.
tw_printf () is used to write to the standard out file. Unlike tw_fprinf (),
the standard output messages are not immediately shipped off to an object on
node zero. Instead, they are sent to the local standard output object stored on
every node. Such objects are similar to file objects, in that they never run,
never roll back, never migrate, and do not contribute to the GVT
computation. When commit time is reached, commit () is called for tiie local
standard out object, once its turn comes. However, generally the indi,,idual
nodes cannot physically write to the output file. (And we wouldn't want
them to, if they could, as the result would be a badly scrambled file, as
multiple nodes wrote to it in an undisciplined fashion.) Instead, any
committed messages are sent to the IH node.

The IH node is a holdover from an early architecture that TWOS ran on. It is
a node that is able to perform physical output from the parallel machine to a
hardware storage device holding the standard out file. On the BBN GP1000, it
is a special node that is used by TWOS but does not participate in the Time
Warp computation. sndmsg () is used to get the message tc. the IH node.
Upon its arrival, it is written to the standard out file.

129

U

I
U

I
I
I
U
I
I
I
I
I
I
I

130 U

Chapter 21: The Main Loop of TWOS

The main loop of TWOS is the driving engine of the operating system. This
loop repetitively executes, alternating between running processes, handling
messages, migrating states, and performing other operating system work.
Experience has shown that the implementation of this loop can have
significant effects on the performance of the operating system.

After system initialization has been completed, TWOS enters the main loop.
All user and system code executed from this point until the termination code
is called from within the loop, directly or indirectly. TWOS' main loop is
contained in a function called MainNodeExecutionLoop () on the GP-
1000, and called main () on all other implementations. (Having the same
looping code in different functions for different machines is rather sloppy andU confusing, but time does not currently permit fixing this problem.) The
remainder of this chapter will assume that Main Node ExecutionLoop ()
is the function containing the main loop, as this manual is primarily to be3 used with a GP-1000 implementation of TWOS.

The main loop of TWOS is an exceptionally difficult piece of code to read, not
so much because of complexity of its code as because of the multiple
conditional compilation pre-processor' statements. It's often taxing to
determine whether a particular line will or will not be compiled for any3 particular platform. The description below will apply exclusively to the
version of the loop compiled for the GP-1000.

3 Main_NodeExecution_Loop () also contains some initialization code.
First, in some GP-1000 specific code, MainNodeExecutionLoop () starts off
by setting up the node number, configuration file name, and statistics file3 name, then determines how much memory to allocate for TWOS use. Once
this memory has been allocated, it loops to touch all pages that have been
allocated, plus all pages of TWOS' heap and text area, thus ensuring that the
Mach virtual memory system will bring all of these pages into physical
memory. The main loop routine then calls butterfly_nodeinit () to
initialize all nodes. This initialization largely concerns timers and low level
message sending data structures. BF MACH init args () is then called to do
further, similar machine specific initializati'on.

I Next, machine-independent initialization is done. This initialization
includes setting up the type table, initializing phase location data structures,
initializing process migration data structures, initializing I/O data structures,
setting up the GVT graph (described in Chapter 7), setting up some messagesending and receiving data structures, and preparing to read the configuration
file. Then init command() is called to read the configuration file, as
discussed in Chapter 18. When init command () returns, the actual loop
begins.

131

I

B
U

The TWOS main "oop is an infinite loop. It will execute until the end of the
run is reached, at which point an exit statement will cause it to terminate.
(This exit statement is contained in a routine called by the main loop, not the
loop itself.) Much of the code in this loop is machine specific. This chapter
will attempt to discuss the loop at the higher, machine-independent level,
but, when necessary, will cover the GP-1000 version of the loop's code.

If host_inputwaiting is not true, the main loop first calls checkalarm()
and check forevents () to see if some low level event has occurred, such
as the GVT interval timer going off, or the dynamic load management timer
going off, or if the system termination signal has been received. If one of the
timers went off, the requested protocol is not necessarily started. Rather, a
counter is simply incremented and, if necessary, another timer event is
scheduled. Another check is made in checkforevents () to see whether
the user has sent an interrupt signal to call the tester (see Chapter 18). If the
tester has been called, host_input_wait ing is set to true.

host_ input_waiting is a flag set when the user has just interrupted the
system to trap to tester, or when the system is already in tester. When
hostinput_waiting is set, GVT and dynamic load management should not
be run, so the main loop will not test for their timers expiring when this flag
is set.

After possibly calling checkalarm() and check_forevents (), the main
loop tests hostinput_waiting again. If it is true, the loop calls command ()
to read a tester command, and control goes back to the top of the loop, to 3
check again. Once tester is entered, the only actions taken by the main loop
will be iterative calls to command (), until one of the commands exits from
tester by setting host_inputwaiting to false. 3
Once Main NodeExecution_Loop () has gotten past the tester and timer
related work, it next checks a variable called rm ms g. If this variable is non-
null, a message has been received by this node. It could be a message from the
host computer, giving some form of control instruction, or it could be a
message to perform a tester command, or it could be a normal message. This U
normal message might be either a user-generated message or a system
message. ih_msgproc () is used to handle message from the host computer,
command () is used to handle tester command messages, and msgproc () is
called for normal messages.

The messages handled by ih_ms gp roc c() include messages directed to
standard output objects (see Chapter 20), error messages, statistics messages
(see Chapter 22), messages relating to various logs, a simulation end message,
or an acknowledgement of the creation of an object ordered from the
configuration file. There is only a single node that receives such messages,

132

typically node 0. This node is sometimes referred to as the 1H node, and
sometimes as the CP node.

If the message is a regular message, msgproc () must determine which type of
I message it is, and properly handle it. msgproc () consists largely of a case

statement. There is one case for each type of system message. If the incoming
message is a system message, its type causes the appropriate case to be chosen
and the appropriate handling routine to be called. If the incoming message is
a user message, the case statement is bypassed in favor of simply calling
deliver () to handle it. (See Chapter 3 for further details on what happens to
user messages at this point.) Whatever type of message this was, msgproc ()
next calls dispatch (), a routine discussed in Chapter 4. dispatch () might
cause an event to be run, or might handle a rollback, or perform any of
several other possible actions involving a single process. When dispatch ()
completes this work, however, it will return to msgproc (), which returns to
MainNodeExecution_Loop 0.

If MainNode Execution Loop () found an message in rmmsg, then after
the message is-handled, control returns to the top of the loop. Otherwise, the
command queue is checked. As discussed in Chapter 18, the tester has the

ability to issue commands that will be performed at some particularU simulation time, and not before. These commands are saved in the
command queue, ordered by the time of their execution. At this point,
MainNodeExecutionLoop () checks to see if the current GVT has
exceeded the time of the first command in the queue. If it has, that
command, and possibly others, should be executed, so
exec commandsin_queue () is called. This routine will execute all
commands in this queue whose times are before GVT, in simulation time
order, by calling command () on each of them. Once the queue has been
emptied of all eligible commands, execcommandsinqueue () returns to
the main loop, which returns control to the top of the loop.

If the loop continues to execute, rather than returning to its top, the next
action is a call to timer interrupt () to determine if the GVT protocol
needs to be started. If it is started, control returns to the top of the loop.
Otherwise, dlmTimerinterrupt () is called to check if the dynamic load
management protocol needs to be started. If it is started, control returns to the
top of the loop.

I Assuming the loop goes on, rather than going back to the top, the next action
is to check if there are states to be sent from the state sending queue. (See
Chapter 13 for details of this queue.) If there are states to be sent,
send_state_fromq () is called. Whether or not that routine is called, the
loop next checks to see if there are messages to be sent from the queue of
messages not yet transported off nodes. If there are, and the loop is not
planning on executing an event, then send_from_q () will be called to send

133U

U
messages. send_fromq () will try to send out as many queued messages as it
can, stopping the first time it fails to send one. A flag called execOb j is used I
to determine if the loop intends to execute an event or not. When it is false, a
message will be sent from this low level queue. When it is true, the queue
will not be examined. If send_from_q () is to be called, execobj will be set to
true, so that the next iteration of the main loop will try to execute a process,
rather than send a message from the queue.

If the queue is not examined, the loop checks to see if there is some event
ready to execute. Event execution is set up as described in Chapter 4, but only
at this point does TWOS actually consider switching contexts to run the
event's code. If there is an event to be executed, execObj is set so that the
next iteration of the loop will send a message from the queue, instead of
scheduling an event again. On the GP-1000, the main loop will then call
readthemail. () to see if any other node is trying to send a message to this
node. read_the_mail () will try to fill rmmsg, if some other node wants to
send a message to this node. This call to read_the_mail () will only bring amessage into rmins g if the message is a system message, or if its virtual tinme

is lower than the event about to be run. If rm_msg is filled by this call to
read_the_mail (), then control will be transferred to the top of the loop,
where, as discussed earlier, the message pointed to by rm.msg will be handled.
In essence, this call to readthe mail () and the subsequent test of rmmsg
determine if any incoming work has a higher priority than the event about to
be run. 3
If readthemail () did not find a more important message to handle, the
next action is to perform a lot of timings, some of which are conditionally
compiled, some of which always occur. TWOS is about to switch into user I
code, so the timing functions must account for the change in control. A flag
called objectCode is set to true to indicate that user code is about to execute,
and switchover() is called to switch to the user's stack and program
counter.

Whether the queue was examined or an event run, the next thing done when U
control returns to the main loop is to check if rm msg has been set, indicating
that an incoming message must be handled. If rrm_msg has been set, control
returns to the top of the loop, where, as discussed earlier, msgproc () will be U
called to handle the message.

Assuming that control has not jumped back to the top of the loop, the nextU
action is to call readthenmail (. This call to read_the_mail (), unlike the
one made before executing an event, will accept any incoming message into
rmirmsg. This call to readthemail () is the last action in the loop, so when
readthemail () returns, control simply goes back to the top of the loop,
which starts all over again.

1

134

A short recapitulation of the actions within the loop itself will be worthwhile,
to help clarify the actions of the loop.

1. Check for any alarms that may have gone off. Go to 2.

2. If a tester command needs to be performed from the console, do it
and go to 1. Otherwise, go to 3.

3. If there is an incoming message, handle it and go to 1. Otherwise, go
to 4.

4. If there are queued tester commands, execute them and go to 1.U Otherwise, go to 5.

5. Check the timers for GVT and dynamic load management, in thatorder. If either went off, start its protocol and go to 1. (Do not start both
protocols without first returning to 1.) Otherwise, go to 6.

U 6. If there are states to send to other nodes, send one of them. Go to 7.

7. If there are messages to send at a low level and we aren't cleared to
execute an event, send as many messages as possible and dear the way
for event execution on the next iteration. If the sends led to the arrival
of a message, go to 1. If the send did not cause a message'to arrive, go to
9. If we didn't try to send messages, go to 8.

8. If there is an event to execute, block execution of another event
during the next iteration and look for a message indicating that some
higher priority work is coming in from another node. If so, go to 1. If
not, perform some timings and execute the event. If, as a result, there
is an incoming message, go to 1. Otherwise, go to 9.

3 9. Get the next incoming message, if any. Go to 1.

U
I
U
U
I

135

U

U

U

I
U

U

UR

Chapter 22: Statistics

TWOS gathers many statistics during the execution of a simulation. These
statistics permit verification that TWOS executed the simulation correctly,and also can be used to analyze the performance of the system. This chapter

covers how those statistics are gathered and printed.

The statistics gathered by TWOS are varied. Some related to the behavior of
processes, some to the behavior of entire nodes. Some relate to committed
behavior, some count actions that may be rolled back. Some are counts of
user visible actions, some count actions that occur below the level the user
can see.

Per-node statistics are not kept in any unified place. A large number of
variables are scattered throughout the system holding this sort of data.
Typically, they are updated in the routines dealing with the actions they
count. For instance, several variables keep track of the behavior of the phase
location mechanism (see Chapter 17). One such variable is incremented
every time a local node's cache is examined, and another is incremented
every time the desired entry is found there. These statistics can be used to
calculate the hit ratio of the cache. Other per-node statistics keep track of the
number of migrations performed, load management data, message buffer
pool usage, the largest Ept for any local process (see Chapter 16), and page faultstatistics.

Per-process statistics are kept in each process' OCB, in a special statistics data
structure. This data structure is called the stats s structure, and contains
around 40 statistics. Most of them are integer values. They keep track of the
number of messages sent and received, the number of events performed, the
number of negative messages sent and received for cancellation purposes, the
number of messages returned by message sendback, the amount of time spent
in the process, the length of queues, migration counts, the number of states3 forwarded due to temporal decomposition, the largest size of the dynamic
memory address table, the number of dynamic creation and destruction
messages sent, and how many events were started and how many completed.
In most cases, the number of messages of a certain type that were sent and
received are both stored. When the totals for all processes of the simulation
are added up, these sent and received counts should match. (See Appendix
E's discussion of the check/measure program for details on balancing
statistics.)

3 These statistics are also gathered in a variety of places in the kernel, but a
significant number of them are dealt with during commitment. objpast ()
calls stat s _garbtime() for each committed input message and
stats_garbouttime (for each committed output message. Depending on
the type of the message (event, creation, or destruction), statsgarbtime ()

1 137I

U
will increment the correct statistics field to indicate another committed
message of that type. In the case of an event message, stats_garbtime ()
might also increment the count of committed event bundles. (An event
bundle is a set of event messages with the same receiver and the same receive
virtual time.) stats_garbouttime () only calculates statistics for event
messages, but does count output event bundles, which will not necessarily
match up with the simulation's total count of input bundles.

Two other places where many statistics might be incremented are during the
sending of a message and during the receipt of a message. smsg_st ats () is

called when a user message is to be sent, in several places in the kernel.
These include:

" places in nq_outputjmessage () and nq_input_message () that U
might send the message back, instead of enqueueing it (see Chapter
10); 3

"* cancelomsgs (), when messages are cancelled due to rollback,
under lazy cancellation (see Chapter 5); 3

"* cancel_all_output (), when messages are cancelled due to
rollback, under aggressive cancellation (see Chapter 5);

"* getmessage to sendback 0, when a message is about to be sent
back to relieve memory shortages (see Chapter 10); 3

"* and sv doit (), when normal message delivery has been requested
(see Chapter 3).

Statistics are written to a file called XL STATS at the end of the run. (A - s
switch followed by a file name on the TWOS command line forces the
statistics to be written to that file, instead. See the User's Manual, Section
2.3.2.1.) The statistics file is created at the start of the run, but no data is
written to it until the run completes. Once TWOS detects termination of the
run, dump_stats () is called. Termination is detected in gvtupdate (), when
the new GVT estimate reaches positive infinity plus one. (See Chapter 7 for
further details.) dump_stats () is called before writing out the critical path, if 3
the critical path is to be written from this run. (See Chapter 16.)

dump_stats () calls Excel head () to write out a header, then runs through 3
the scheduler queue calling Excel_bodyl () on each entry in that queue.
Finally, dump_stats () calls Excel-tail). dump_stats () works
independently on each node.

Excel-head () only writes data from node zero, though it is called for all
nodes. It formats a number of messages containing header lines that consist I
mostly of identification information that should appear in the statistics file.

3
138

U

Excelhead () calls send toIH () for each of these header lines to get them

printed out.

send to IH U simply causes a message of type XL_STATS to be sent to the CP
node, a special node that does not run the normal Time Warp system, but acts
as a utility node for the run. When the message arrives, the CP node will run

a routine called ih_msgproc () to handle this special message. (Other
messages that use send-toIH () to get to the CP include error messages, log

messages, simulationi end messages, and acknowledgements of creations done

from the configuration file.) xl_stats_msg () is called to handled a message

of type XL_STATS.

xl stats_msg () accumulates data contained in XLSTATS messages in an
internal memory area until that memory area fills up. Then it calls

HOST fputs () to write out the entire data area to the actual file in the host
I computer's file system. This method guarantees that any single line to be

written to the statistics file will appear in a single piece, with no intervening
data, but it does not guarantee that all lines produced by a single node will
appear contiguously in the statistics file. The arrival of messages from other
nodes between two messages for a single node may scramble the statistics file,
somewhat. For this reason, all messages sent to the statistics file contain the
node number of the sending node in the message's data area. (Typically, most
statistics files do contain all data for a single node in a contiguous block, but it

is not guaranteed.)

Excelbodyl () prints out all per-process statistics. It reads the statistics from
the process' stat s_s structure and formats a message containing them as
text. Excelbodyl1 () then calls sendtoIH () to get the data into the file,
and this call to sendto_IH () leads to the same actions as Excel-head () 's
did.

Excelt a i I () is the most complex of the statistics output routines. This
routine writes out all per-node statistics. The basic method is the same as that
used by txcel_head () and Excel_bodyl () - a message is created and
send to_IH (is called to ship it to the CP node, for later printing. However,
Exceltail () sends many more kinds of XLSTATS messages than the other
two routines. If it is running on node 0, it sends a message containing the
count of event messages sent by the configuration file reader. For all nodes, it
calculates the phase location cache hit ratio and sends a message with both the
raw data for the cache and the calculated hit ratio. It sends a message with
data concerning the number of migrations into and out of the node, as well as
a count of how many times messages were misdelivered and had to be
forwarded and the number of states sent out and coming in, and, finally, the
number of times the pre-interval state optimization saved a state send (see
Chapters 12 and 13). Excel tail () then sends a message concerning
dynamic load management, wit-h the number of load management cycles, the

I
139

I

5
number of times this node was considered overloaded, and the number of
times that this rode was overloaded but could not find a process to migrate 3
out (see Chapter 11).

On the GP-1000, Exceltail () sends a message from each node with page 1
fault statistics. TWOS tries to avoid page faults, so this message's data is used
to determine how well TWOS succeeded. The Mach operating system on the
GP-1000 causes each node to have several potentially different node numbers 3
for different software layers of the system, so another message prints out these
numbers for each node. Sometimes the low level message sending facility on
the GP-1000 is delayed because a receiving node cannot accept its incoming
messages, being busy doing something else. Another message is sent to the
statistics file containing data about how often each node was blocked because
other nodes were not reading its messages.

Another message is sent containing information about process migration and
state migration naks. (See Chapter 13.) The next message contains data about
the relative success of the limited jump forward optimization on this node
(see Chapter 12). TWOS is able to keep information about which processes
used up the single largest slice of time without trapping to the system. If this
information is being kept, another message is sent containing this node's
highest "hog". If internal TWOS timings are being made, a number of 3
messages will be sent containing timing data. Another message contains
information concerning the message buffer pool. If the critical path is being
calculated, data concerning the performance of the critical path algorithm is
sent in a pair of messages. A message containing the node's local
contribution to critical path length is sent whether or not the critical path is
being calculated. (See Chapter 16 for more details on critical pathcomputation.) A message describing the number of times a single home
answer message was able to deal with multiple home ask requests is also sent.
(See Chapter 17 for more details on home ask and home answers.) The next U
message sent contains the number of times a process was blocked due to
throttling. (See Chapter 15 for more details on throttling.) The last two
messages sent contain the number of home asks and home answers sent and I
received. (See Chapter 17.)

After all node have completed sending their statistics to the CP, and have also U
completed any other termination cleanup they must do, each node sends a
signal to the CP indicating that it is done. Once all of those signals have
arrived, the CP must clear out any data remaining in the statistics data area it I
allocated to deal with incoming XL STATS messages. Once that data is
dumped, the CP closes the statists file.

The statistics file is a large file, and is not easy to read. The check/measure
program, discussed in Appendix E, is able to compress some of the data into a 3
more convenient format. This format is typically enough for checking

140

U

normal runs, but the entire statistics file is sometimes needed to obtain details
on the behavior of particular objects or particular features of TWOS.

Currently, TWOS does not calculate the complete set of message statistics. For
instance, the number of dynamic creation messages sent is not counted, only
the number received. Also, some statistics that are gathered are not printed.
For instance, the number of committed output messages for each process is
not printed in the statistics file, even though statsgarbouttime () gathers
it. TW 2.7 was originally planned to have all of these irregularities corrected,
but time does not permit correcting them, under the circumstances.

141

UI
U
U
U
U
U

II
U

II
I

1423

I

Chapter 23: Queue Handling

TWOS contains many queues. Each node has a scheduler queue, a process
migration queue, a state migration queue, a pending list queue, and several
low level message sending and receiving queues. Each process has an input
queue, an output queue, and a state queue. (And, if the critical path
computation is being performed, a truncated state queue.) Rather than
handling each of these queues with special, queue-specific code, TWOS
contains general queue handling routines. These routines are located in two
modules called list. c and turboq2. C.

Because of this layer of software, TWOS queues can generally be implemented
as any type of data structure that is quick or convenient. In practice, the only
data structure supported by the routines in list . c and turboq2 . c is a
doubly linked list, so TWOS queues are all implemented as doubly linked
lists.

list.c contains very low level queue handling routines. The lists handled here
consist of a header element and an arbitrary number of elements in a single
order. The routines in 1 i s t . c handle tasks like:

"* creating a list element.

"* destroying a list element (once it has been removed from the list)

"* creating a new list

"* destroying a list (once all of its elements have been destroyed)

* inserting an element into a list

* determining if a pointer points to I list header

* finding the next element in a list

* finding the previous element in a list

• removing an element from a list

For the most part, these routines are very straightforward, given that the list
implementation supported is a simple doubly linked list. Each list element
consists of a forward pointer, a backward pointer, a size, a padding integer,
and the actual data of the list element. The purpose of the padding integer is
to force the data to start on an eight byte boundary, which is of importance to
some machines. In the future, the padding integer could be used to contain a
tag indicating what kind of list element this is, but time has not permitted

143

£
this change to be made. The li. header consists only of the pointers, the size,
and the padding element. It has no associated data allocated for it. I
In practice, certain of these routines are almost never used. Instead, macro
versions of them are used, instead. For instance, 1_next () is rarely used,
with 1 next macro () being used, instead. Since many linked list operations
are so basic, -undergoing the overhead of a function call is hardly worthwhile
for these operations. If a more complex data structure was put in place, for
which a macro version of the function was not practical, the macro would be
redefined as simply a call to the function. 3
turboq2. c contains higher level queue management routines that know
certain facts about the structures of particular queues. These routines mostly
work on the input queues and output queues of processes. Most of the
routines in turboq2 . c are devoted to handling bundles in the input and
output queue - finding the next or previous bundle, finding the next message U
in a bundle, and so forth. A call to n x t i b q (), for instance, will return the
first message in the next bundle in a process' input queue, given a pointer
into that queue. These routines are used by the event scheduling code and U
the critical path code.

There is one extremely general purpose routine in turboq2. c called find). 3
find () finds a particular thing in a particular queue. Its parameters are a
pointer to the queue's header, a starting point for the search, a pointer to
some comparison element not yet in the queue, a pointer to a function to be
used to compare queue elements to the comparison element, and a variable
that will be filled with an integer describing whether the located element is
equal to the comparison element or not. find () returns a pointer to the U
element it found.

While it is very general purpose, in practice find () is only called in two 3
places by TWOS. Both are in enqueueing routines, nq_ input_message ()
and nq_output_message () . (These routines arediscussed in Chapters 3 and
10.) find () is used by these routines to find the appropriate place for an 3
incoming message in either the input or the output queue. A different
comparison routine is used for the two, with nq_input_mes sage ()'s being
more complex. (The routine used by nq output_message () is somewhat
out of date. out still works properly, though for the wrong reasons. Time does
not permit fixing it, at this point.) 3
Very likely, replacing the linked list data structures with a structure more like
a splay tree would improve the performance of many TWOS applications. A
linked list is not an especially efficient structure for searching, and every time
that a new message is to be sent the output queue must be searched.
Similarly, every time a new message arrives, the input queue must be
searched. Recent experience has shown that, under certain circumstances,
these queues can grow very long, and the resulting search time can become a

144

3 very real cost to the run time of the simulation. Changing to a binary tree or
a splay tree is conceptually simple, but would require a great deal of fairly
mechanical work. Also, if the new data structure could not use simple
macros for operations like finding the next or previous element, the cost of
using a subroutine, instead, might be more than the benefit of the more
efficient data structure, for many simulations.

U

3
U
U

I
U
U
U
U
U
U
U

145

U

I

I
3
U
U
U
UI
U

I
3
3

146 3
U

I

Chapter 24: Debugging Facilities Internals

TWOS has a number of built-in debugging facilities. One of these, the tester,
was covered in Chapter 18. This chapter covers a number of other debugging
facilities in TWOS, including paranoid code, the monitor, the flow log that is
used as a driver for the fplot graphical utility, the message log that is used as a
driver for the mplot graphical utility, and the migration log.

24.1 Paranoid Code

Paranoid code is code that is normally not compiled into TWOS, but can be,
for debugging purposes. This code performs much more substantial checking
of possible error conditions, especially checking to see that assumptions made
before operati3ns are performed are indeed true. Always performing these
checks would slow TWOS down unacceptably, but being able to request them
when a problem is known to exist has proven very helpful. To compile the
paranoid code into TWOS, the makefile should be altered to define PARANOID
in the DFLAGS line, all object files should be deleted, and TWOS should be
remade. Once the problem is found and fixed, remember to remove the
definition of PARANOID from the makefile, delete all object files, and make
TWOS again.

24.2 The Monitor

The TWOS monitor is a special subsystem that can be used t') watch the
operations of the system during a run. It can selectively print out a message
each time one of many internal TWOS functions is called, along with the
parameters passed to that function. If desired, the tester can be called
whenever a particular function is entered, and tester commands can be used
to control the monitor. The monitor code is normally compiled out of the
system, as it imposes a rather high overhead on almost all standard
operations, so, like paranoid code, a separate compilation must be done
whenever the monitor is needed. The DFLAGS line in the TWOS makefile
should be changed to define MONITOR, all object code removed, and a make
done. As with paranoid code, it is important to completely undo this process
after debugging is complete, since the monitor overhead is high.

The monitor works off of four data files that must be present in the directory
from which the simulation is being run. These files are called name s,
levels, str, and datatypes. The str and level files are created by
performing a "make st r" in the Time Warp directory containing the object
code for the Time Warp library. The name file is made by redirecting the
output of the UNIX utility nm run on the Time Warp library to a file called
name. The datatypes file does not typically change from version to version
of TWOS, so any existing datatypes file can be used. One is stored in the
BF_MACH dire,:tory of the release tape.

147

B

The levels file is the only one requiring any modification by the 3
programmer doing the debugging. Initially, this file is set up so that the
monitor will not print a message for any function that is called. There is a
line in this file for each function that can be monitored, consisting of the
function name and a numerical monitoring level. Initially, all monitoring
levels are zero. Changing one of those levels to 1 will cause a message to be 3
printed out whenever that function is called. Changing a level to 20 will
cause tester to be called when that function is called. A tester call can also set
up the monitor so that only a single process is so monitored. This method is 3
imprecise, as internal TWOS functions do not always contain enough
information to identify what process they are called for, and some are not
associated with a process at all, but it does a reasonable job of filtering out 3
unwanted information.

The other data files are simply read in and used by the monitor. They need 3
not be altered from run to run. (str and names must be recreated every time
TWOS is recompiled. datatypes need never be changed.) They are read in
during system initialization by a function called moninit (). The details of U
this function are tedious, yet fairly obvious, so they will not be discussed too
closely here. First, load_funcs () is called to read the str file to get a list of
function names and parameters, which is stored in an array called B
mon func [I. The datatypes file is used to translate the string descriptions
of data types in the functions' parameter lists into an internal coding. 3
Next, load nt () is called to read the names file. This file contains beginning
and ending addresses for all functions in Time Warp. load nt (y looks up
each function named in this file in the mon func C I array set up earlier and
stores the start and end addresses of the function in that array, in the proper
entry. An array called mon_array [I is then set up to have pointers into the
mon_func [] array, and the mon_array [] is sorted by the beginning addresses.

Next, loadlevels () is called to read the levels file. The monitor level for
each function is copied into proper entry in the mon func C I array. Handling i
the levels file completes monitor initialization.

In order to make a function visible to the monitor, the first statement after
data declarations in the function must be "Debug". When the system is
compiled without the monitor, this statement is defined to be a null string,
doing nothing. If the system is compiled with the monitor, this statement is
defined as a call to mad monitor () .

mad-monitor () finds the address of the statement that called it by illegally
looking back through the stack. Becailse this statement is in the function that
monitor should print information about, madmonitor () can use the 3
statement's address to find the name of the calling function, by searching the
mon array (J. The mon array [I gives a pointer into the mon func [array,

148

ii

which contains the function name and information about its parameters.
Various other nasty business with the stack extracts the parameters, and the
information stored in mon_func [] is used to properly interpret the extracted
bits. (This interpretation is done in a function called format (, which is
where the check for monitoring a particular process is made. The check is
made by examining the parameters and seeing if any of them refer to the
process in question.) Once the parameters are properly interpreted, a line of
information about the monitored function is printed and, if the level value is
set to 20, tester is called. In any case, once mad monitor () exits, it simply
returns to the function that originally called it.

24.3 Flow Logging and rplot

One of TWOS' associated graphical tools is the fplott program. This program
takes a data file produced by TWOS and displays a graphical plot showing all
events run during the simulation. The fplot program is described in section
7.3 of the User's Manual, so this chapter will only discuss how its data, called
the flow log, is produced.

The flow log is produced at the request of the user, from a tester command
that should be put in the configuration file. This tester command calls
flowlog () to set up a data area on each node to hold that node's part of the
flow log. Using the flow log takes substantial space, so it is not done by
default.

fplot draws one line for every event performed during the simulation, so
TWOS must produce a recoi'd for every event. The flow log entries are made
by flowlog_entry (). This routine is called by tobjend (), a routine in turn
called whenever the low level context switching code returns from the end of
an event. (Appendix G contains some details of that code for the GP-1000; it
tends to be assembly code written for a specific machine.) t objend () will
eventually call o b j en d (), but first it will take some timings and call
flowlog_entry (). flowlog_entry () uses the timings just taken to
determine the length of the event. Then it tries to write a record into the log
set up by flowlog (). The first time the space set aside for the log is full, if it
ever is, flowlog_entry () prints a message saying that the area is full. Once
the flow log area for a node is full, the run continues, but no further entries
are made on that node. Other nodes continue to make their entries until they
fill their logs or the run ends.

At the end of the simulation, when the CP has collected simulation end
message from all nodes, it calls dumplog () to write each node's flow log to
the data file. Each node puts the data in the same data file, so it may be
somewhat scrambled, but each entry is written atomically. dump log () figures
out how many flow log entries the local node generated and sends a
FLOWDATA message for each to the CP. When the CP receives this message, it
calls cp_flog_msg (). This routine uses complex trickery very specific to the

149

!

GP-1O00 to read the message, whose contents are stored until all flow log 3
messages have arrived. Eventually, cp_flog_msg () will print out all of
these messages into the flow log.

24.4 Message Logging and Mplot

The mplott program is similar to the fp1ot program, but it plots messages, 3
instead of events. One line is drawn for each message sent, on a virtual time
versus real time graph. The line starts at the virtual time, real time position
at which the message was sent, and ends at the virtual time, real time 3
position at which it was received. Color coding is used to distinguish between
messages of various types, and the same menu and mouse interface used for
the f.plot program is used for mplot.

Instead of logging events, the message plot data gathering feature in TWOS
logs messages. Like the event logging feature, messages are not logged by 3
default. A tester command issued from the configuration file sets aside space
for logging these messages. The basic logging function, msgiog_entry (), is
called in several places. It is called in msgproc (), to log system messages. It is 1
called in nqinput: message () and nq outputmessage () to log regular
messages. And it is called in gcpast () to log a special dummy message used
to make GVT entries in the message log. The mechanism for transporting
the log messages sent by msglog_ent ry () is similar to that used by
flowlog_entry () to log events, and all subsequent code is a mirror image to
that used by the flow log.

The code used for the event log and the message log, while very similar, is
completely separate. In principle, both logs could be used for a single run. In
practice, doing so would use up far too much space to be of much practical
value. 3
24.5 The Migration Log

The migration log is used as a debugging and performance monitoring tool to 3
examine dynamic load management. Since it produces a relatively modest
amount of data, it is written for all TWOS runs. A message is produced by
each node during each load management cycle. This message contains the
node's identity, a unique identifier of this load management cycle (to ensure
that all load messages from all nodes for a single cycle can be easily grouped 3
for examination), and the effective utilization of the node during that cycle.
(See Chapter 11 for an explanation of effective utilization.)

Additionally, a message is sent by any node initiating the migration of a
process. This message contains the node number, the value of the local real
time clock at the start of the migration, the load cycle identifier, the name of I
the process, the process' phase begin time, the node it is being sent to, the
current SVT of the process (which is usually the same as its phase begin,

150

under the current temporal splitting policy), the number of states, input
messages, and output messages being sent, and the current GVT at the start of
the send. A matching message is sent to the migration log by the sending
node once the migration completes. This message contains the sending
node's identity, the local real time clock, the name of the process moving, its
phase begin time, the receiving node, and the current GVT when the send
completes. These two entries can be used to determine how long migrations
take, what sort of processes are migrating, which nodes are involved, and
how much data is moving.

The migration log can be used to produce data that drives a graphical dynamic
load management playback tool, instead of its regular output. This graphical
tool has limits on the number of nodes it can support, and it has at least one
bug that causes a crash, but it can sometimes provide insight into the
workings of dynamic load management. It sends data to the migration log at
the same times as the normal logging mechanism, but the messages contain
different data, including a tag to make identification of the type of message
easier. Also, when the graphics program is being driven, TWOS must sendSdata to the log whenever an object is created, and whenever a process is split.
Other than the format of the data, its handling is the same as for normal
migration logging.

Whenever a migration log entry of any type must be made, send to IH () is
called. This function sends a message to the CP. That node calls3 migr_log_msg upon receipt of the message, which causes the CP to open
the log file (if it hasn't already been opened), perform HOST_fputs () to write
it, and HOST_f flush () to make sure the data is flushed immediately to disk.SUnlike some other logging functions, the migration log writes its data to the
actual disk file as soon as it can, permitting it to be examined during the run.

1
U
3
I
U
I

I 151

3

I
3
U
3
3

II
3
Ul
3

II
3

1521

It

Appendix A: The Sequential Simulator's Internals

By John Wedel

The sequential simulator (the simulator) is a fully sequential program which3 uses the same application modules as are used by Time Warp itself but
operates sequentially without roll back. It runs entirely on one node. It is
supposed to produce the same statistics as Time Warp insofar as the statistics
are pertinant to a sequential run, that is, the number of events, the number of
committed messages, and some other statistics. One of the purposes of the
simulator is to debug programs which may not be running properly or may
cause a crash when run with Time Warp itself. For this reason the simulatorcontains a number of options specified on the command line and a number
of internal facilities for debugging. These are described in the Users Manual.

The simulator is contained in a library which is linked with the application
modules to form a program. All Time Warp entrypoints are included in this
library and are identical in name and arguments (if any) to the entrypoints in
Time Warp itself. The simulator is compatible with the Time Warp Users
Library. There are two simulator libraries called twsim.a and twsiml.a
respectively. The latter contains all of the former plus the users library.

A simulator application is a single process running on one node and is fully
sequential with only a single message queue. No operations are performed in

m parallel as they would be in Time Warp itself. Most of the data structures in
the simulator are implemented as arrays which are sized at compile time.
This is not, however, true for the message queue which is a linked list. The
queue is discussed later in this document.

If the simulator is started with the -q option it will display its banner on the
console and await commands. A list of these commands which are designed
for debugging aids can be obtained by entering an H (for help). This initial
stop is dependent on the -q option which sets the step flag. The step flag is
read before each event starts and causes a stop and request for input at the
beginning of every event until the flag is turned off.. The step flag is normally3 turned on by ST and off by SF.

The simulator next reads a configuration file which is specified on the
command line or defaults to a file named 'cfg. The configuration file reader
is a yacc program using a lex program to define its tokens. This is different
from Time Warp which uses a c-program to read the file. Note that yacc andSlex are processors which produce C-files that are. compiled by the C-compiler.
The simulator file reader will check the syntax of all commands input
including checking the types of the arguments. If it finds a configuration
command it does not recognize it will issue a warning and ignore the
command. If it reads a known command its behavior depends on the specific

3 153

3

I
command. If it is a Time Warp command which is not applicable to the 3
simulator it will check the syntax and issue a warning if it is wrong. If,
however, the command is a simulator command and the syntax is incorrect
an error flag will be set and the simulator will exit after it finishes processing 3
the file. Continuing to the end of the file may show more errors in the file.

The configuration file reader sets up the data structures for the defined .object 3
types and objects (object body). the object body array entry is the equivalent of
the OCB in Time Warp. It contains a pointer into the object type array. This
array in turn has entries pointing to the code for the init, event, and term
sections of the object type. The object type array is accessed frequently and itssearch routine uses a binary search.

The configuration file should contain, a command to schedule the first event.
This command will create the only input queue and place the initial event
message in it. The order of configuration commands in the file is important
for both the simulator and Time Warp. For example, the getfile command is
processed and reads in the file and this data might be used by the application
programmer in a message scheduled for the "init' section of an object in the I
application. Thus the getfile must be processed before the object is created by
an obcreate configuration command. The obcreate command creates the
object and also runs its init section. When the simulator finishes the I
configuration file it will initialize some timing variables and attempt to read
the input queue thus starting the simulation. Thus the implementation is
such that timing statistics do not include the configuration operations nor the I
time for init sections of objects.

When the simulator has exhausted the event queue it processes the term 3
sections of all of the objects, does some clean up work, displays some statistics
and exits. If the -q option was used on the command line, additional statistics
are displayed. The simulator measures the time talen by the various events
and keeps timing statistics. These statistics are of little value on the Sun
machine version because of the very low resolution of the system dock. The
overall time if it is several minutes or greater is of reasonable accuracy. On
the BBN Butterfly machine, the clock resolution is much better and the data
on individual objects is useful. The overall timing statistic is also derived at
the time that the program finishes but before the statistics file is written.
After every event the simulator checks an error flag and will terminate if this
flag has been set.

The simulator has a number of options which can be specified on the
command line. They are listed in the users manual. Some of these options 3
may slow down the simulator. Options which write to files have this effect
except that special attention is given to the option(default on) which makes
the XL STATS file and the option for the SIMDIR file so that they do not
actually write the files until the clean up at the end of the program. This

154

procedure is used so gathering the data only uses memory and has a minimal
effect on the timing of the run. The options which produce the TRACE file and
the message files output the data for each event to the file at the time the
event is processed and thereby affect performance.

The simulator responds to control-C and stops for instructions before starting
Sthe next event. The implementation uses a Unix signal to stop the program.

The signal handler simply sets the step flag to true and continues the
program. Therefore if an event is in an infinite loop control-C will not stop

I because the step flag will not be read until the next event is about to start. The
Unix quit command (control-backslash) will always stop the program but will
dump core unless this has been disabled (in the operating system). A list of
the commands to the simulator when it has been stopped by the step flag
during execution can be obtained by typing 'H' as previously noted. This list
describes the breakpoint insertion and removal commands which also are
acted upon just before starting events.

Because of the single process nature of the simulator the Time Warp
commands for creating and processing files set up the appropriateenvironment and then call the appropriate UNIX library functions. The

action of the simulator for reading files is the same as Time Warp. The entire
file is read into memory during the initial 'getfile' configuration command so
that any object can use the file with its own local character pointer.

3 During operation of the simulator a number of error conditions may be
detected which will result in warning messages. A number of other more
serious error conditions will result in error messages and the simulator will
exit immediately. Because the simulator is a single process it can be run
under control of a debugger such as dbvtool or gdb. See also the next
paragraph about internal debugging commands.

One of the help commands which can be used is the 'debug on'
command(DBT) This will cause most of the Time Warp entry points to print
out data regarding the arguments with which they are called and then to
pause with the name of the entry point itself. Use of this switch will evidently
cause the simulator timing to be useless. The operator must also continue the
simulator run after each debugging pause by typing a carriage return. Use of
breakpoints to stop the simulator before an event with a known error and
then using the debug switch to run through the Time Warp entry points in
the event is advised.

The implementation of the memory allocation commands newBlockPtr and
newBockWithPtrs has included a feature useful for debugging. Recall that
newBlockPtr in Time Warp results in an index number which must be
passed through pointerPtr to obtain a genuine C-pointer. This is also the
case in the simulator although the newBlockPt r could return a genuine C-

155I

B

pointer itself. Therefore failure to call po i r te r Pt r will likely result in a 3
crash in the simulator as it will in Time Warp.

The linked list message queue uses message blocks obtained from the i
operating system as needed. On the Sun these are obtained from the malloc
system call. On the Butterfly, the page map command is used to map an
amount of memory determined at compile time and then a routine which is

similar to malloc is used to set up and maintain a free list.

The simulator does not release message blocks but maintains its own free list 3
and reuses them. Message blocks are added to the front of the free list when
released and taken from the end of the list when needed. A debugging
command is available(DM DEL) which reads the free 1ýst. This command will
read all the blocks which have been released and not yet used again thus
making it more useful. 3
The simulator uses a single queue for the application. Events are inserted into
this queue by the schedule entry point and removed when the event is
processed. The queue is a splay tree. Early implementations of the simulator
used an implementation with a linked list or a heap for the queue. Tests
indicated that about a 10 percent speedup could be obtained with the splay tree 3
which was therefore adopted as standard. Some applications with very short
maximum queue lengths would, of course, run more rapidly with a linked
list. 3
The splay tree brings the last accessed item to the root of the tree. This is a
questionable procedure for this type of queue because all removals are at the
leftmost node whereas insertions (messages sent) are never there unless the
message is to be received at time 'now'. Different queue accessing strategies
have been proposed but were not implemented in this project.

Messages sent to time 'now' are not legal in Time Warp but can be sent by
special options for backward compatibility. Time Warp will handle such I
messages properly unless they cause an infinite loop but th. simulator does
not have rollback and may give different statistics for programs using this
technique. This occurs because insertion of a mesbage for a given object by I
other objects running at the same time may cause the object to run twice if its
event has already been processed for this specific time. Messages at time 'now'
are, however, legal for messages sent to the stdout object. The Time Warp
routine tw-printf sends messages to the stdout object at time *now'.

If the flag for allowing messages at time 'now' is set by using the 3
configuration file command 'allownow', the simulator implementation may
give different statistics from Time Warp if objects are created or destroyed.
The simulator does not send messages at all for such objects if the action is to I
take place at time 'now' but creates or destroys the object immediately.
Therefore a different statistic for number of messages will result.

156 3-

The sorting algorithm :or inserting messages which have common subfields
is the same in the simulator as it is in Time Warp. Therefore messages are
processed in the same order. This procedure is used to make the statistics
agree. Note however the there is an anomaly in the behavior. The global
event message count given in the S IMD IR file includes the initial messages
sent in the configuration file. The XLSTATS file does not include these
messsages.

The simulator contains a special object for the standard ouiput (stdout). It
sends the output directly to the console (or file if redirected) immediately.
Stdout is implemented as a C-module in the simulator library. If desired the
user can write his own C-program to replace this module and link it in ahead
of the library so it replaces the library module. The simulator always creates
stdout even if it is not created by an obcreate in the configuration file. This
action is implemented in the configuration file reader if it comes to the end of
the file and has not encountered an obcreate.

The internal functions of the simulator are distributed among several C
source files. The contents of these files are described below. To speed up the
program it also uses some routines written in assembly language. These
routines are identical to the same named routine in timewarp itself.

t wsp . c: This files contains the "main" routine and generally
includes routines that are directly used by the simulator internally. Many
routines specific to certain major parts of the simulator are in other files with
!more descriptive names. The initial routine ma in () initializes certain
variables and arrays and then calls main_process (). The simulator loops in
this routine as long as messages are found in the queue and there are no fatal
errors. When the queue is exhausted the simulator calls term_process s) to
perform the actions scheduled by the term section, It then prints some data
depending on the values of some command line options and exits.
dis times () and dis_states () accomplish the printing. The routine
findjhog () calculates the event taking the most time. As stated, time values
are not useful on the Sun because of the low resolution of the system clock.
The routine pr_setup_patht ime () is used ONLY if the critical path
calculation option is turned on. It finds the 'clock' time the event terminated
by taking the maximum of the termination time for the object and the time
each message which started the event occurred. The other routines whose
names begin with p r_ are self explanatory. Note that the lines in the file
which follow the comment 'run the event section' are where the event
section is called by calling a routine through a pointer to its code. This pointer
is stored in the array process I I which is indexed by type of object. This array
is setup by the configuration file.

157

I

twsp2 . c: This file contains the routines that constitute the interface
with the application and a few accessory routines. All application calls to
timewarp have a routine defined in this file. 3

twsp3 . c: The routines that comprise the IO-interface and the
memory allocation routines used by the application are in this file.

The routines with names starting with "io " are used to process the array
f i 1 e a r y (] which contains an entry for each file that is accessed (read,
written, or created) by the configuration file commands get file etc. This
array is also accessed by the timewarp file routines such as tw_fopen () for
processing the file itself. The routines which read data from the file or write
data to it do so through a streams structure in each object so that individual
pointers to characters in the file can be maintained.;

The memory allocation functions (such as newBlockPtr() and
disposeBlockPtr ()) are also in this file as well as the bookkeeping routines
for them. These routines use indexes into an array for the pointer values
returned rather than returning C-pointers directly. This is in agreement with
Time Warp and makes it likely that an attempt to the use the index directly
rather than call po in t e r P t r () to obtain a valid C-pointer will crash the U
simulator as it would Time Warp itself. The index array is created when the
first newBlockPt r () is issued and expands dynamically if necessary. The
expansion occurs by getting new memory from the operating system, copying
the current array values to the expanded array, and then freeing the memoryfor the old array. The array is never contracted if memory is released. 3

t:wqueues . c: This file contains the routines for handling the message
queue. It also contains the routines used by the simulator to call the queue
specific functions. These are find _ next -event () , and
cmqueue event_message() which are self-explanatory. The simulator
calls Pr_setup_messages() andpr_delete messages() justbeforethe
beginning of an event and at the end of the event to read the messages 3
queued for the event into an array the event can process and to delete the
messages from the queue respectively. 3

twhelp. c: This files contains various error handling routines and
processing routines for user input to the simulator at runtime. It also
includes the help () routine which prints out a message on the screen when 3
the user types 'help' at a simulator prompt.

vt ime . c: This file is common to timewarp and the simulator and 3
contains routines for processing the virtual time structures.

1
i

158

3

simlex. 1: This is a source file to be processed by the lex program. It
defines the tokens used in the configuration files. Lex creates the file

I Is imlex. c" which is used by the simulator.

s irmpar y: This is a source file processed by yacc which contains the3 grammar for the configuration file commands. Yacc creates another file
called s impar .h which contains symbols used by lex and also creates
s impar. c which is used by the simulator.. The yacc parser is not recursive
and only one can normally be used in a program. The CTLS prgoram also
uses yacc. Thus part of the Makef ile for making the simulator renames all
the global variables used by yacc to avoid conflicts. Rename is accomplished
by the Unix sed prograi.

s immem. c: This file simply calls ma 1 oc () for memory allocation
when used on the Sun. On the Butterfly, it maps a block of memory, touchesevery page to get it into the memory and then acts to emulate the malloc
routine with the memory obtained. If it runs out of memory from the
original memory map, more memory will be obtained and a warning issued.
The routine s im_free () will free memory managed by the simulator but
will not release it to the operating system. To avoid conflict with system
library routines the simulator programmer should use s im ma bloc () and
sim free (). Note that malloc and free can NOT be used at all in Time Warp.

3 f ault s. c: This file is only used on the Butterfly and contains a
routine which calls the operating system to find out how many page faults
have occurred during the run.

itimer . c: This file contains the low level timing routines. They are
specific to the platform on which the simulator is running. The it i me r ()
routine accesses the operating system's clock

newcon f. c: This file contains the routines called by the configuration
file parser to actually do the work of setting up the necessary structures in the
program.

3I The configuration file routines are defined in such a way that a self-contained
program can be made which only reads configuration files and prints out the
data. This is accomplished by defining the symbol STANDALONE in newconf.c
before compiling. This action changes the name ofconfigure_simulation (), a simulator routine, to main() to create a
standalone program. The parser and token recognizer for the configuration
file are in s impar, y and s imlex. 1.

The names of the routines in this file correspond to the names of
configuration file routines. The routine crtypetable () is called by main ()
and sets up the process array containing the entry point pointers for the

3
1593

event, term, and init sections of the code for each type of object. The routine
cs send message () actually creates and queues messages sent by the user.
Such messages are tagged with the sender object twscon. This routine is
called by config_msg () which results from a schedule () (formerly tell ())
in the configuration file. The routine configuresimulation () is called by Imain () to start processing the configuration file. When that file is exhausted,
the routine siimstart () is entered to create a stdout object and start the
simulation.

stdout . c: This file contains a routine which acts as stdout in the 3
simulator and sends messages to the console. As stated, it can be replaced by
another stdout module written to output things to the users specification.

cubeio .c: This file is intended to be the same as in Time Warp and
contains routiness which produce the XL STATS file. Not all of these
routines are used in the simulator. The routne record objstats () is
used in the simulator and serves to copy statistics from the simulator into the
same structures that are used by Time Warp itself and are found in the Time
Warp ocb structure.

twsd. c: This file contains the global variables used by the simulator.
Recent modifications to the simulator have tended to use variables defined inthe files containing the routines rather than global variables. These symbolscan be accessed by extern declarations in other files that may need them.

HOST-fileio. c This file contains low level 10-routines which differ
among the operating systems on which Time Warp runs.

o1 dt w . C: This files contains some routines used in previous versions
of Time Warp, It is expected to become obsolete.

t 1 ib. c: This file contains some library functions for the user which
are not defined in all the platforms. The file is not needed on the Sun.

160

U

Appendix B: Benchmarking TWOS

This appendix describes the procedure of running a standard TWOS
benchmark. (An example of the results of such a benchmark is contained inAppendix C.)

A standard TWOS benchmark is typically run for each new released version
of TWOS. (No benchmark was run for TW 2.7 because it contained relatively
few new features, and time was short.) The benchmark consists of running
three simulations on varying numbers of nodes. The three simulations are
warpnet, STB88, and pucks. Each simulation is run on 72, 68, 64, 60, 56, 52, 48,U 40, 36, 32, 28, 24, 20, 16, 12, 10, 8, 6, 4, and 3 nodes Also, Warpnet is run on 2
nodes. (The other two applications typically cannot execute on 2 Butterfly
nodes.) For each benchmark, for each number of nodes, four separate runs
must be made, to investigate variation in the new system's performance and
to ensure that the reported numbers are representative of the trueperformance. (The four run per point figure is actually only a guess of the

U proper number of runs to obtain statistical accuracy.)

The first step in running a benchmark is to make a correct version of bothSTWOS and the sequential simulator. These should be stored in a directory
structure set up for this particular version of Time Warp. Next, the three
applications should be linked with both TWOS and the sequential simulator,
producing a total of six load modules. These load modules are usually titled
warpnet, warpnettw, stb88, stb88tw, pucks, and puckstw. The load
modules whose names end in tw are the TWOS versions of the applications,
while the others are the sequential simulator versions. The makefiles stored
in the BF MACH subdirectories of directories for the applications will create
these load modules. Care must be taken to first edit the makefiles to ensure
that they are loading the most recent version of TWOS and the sequential
simulator, however.

3 Typically, Unix shell command files are used to run the benchmark suite.
One is created for each application, containing one command line for each
one of the runs that must be made. These lines should use the -S switch to
ensure that every individual XLSTATS file is saved (see the TWOS User's
Manual, section 2.3.2.1). In most cases, these command files can be left
running overnight, or even invoked in a batch mode by the Unix a t
command. (Note that, if the at command is used, the user should not give
the command file name to at, directly, but, rather, the narne of a second
command file that in turn calls the command file containing all of the TWOS
commands. Otherwise, the Unix cron demon will object to the length of the
line submitted to at and will fail, more or less silently.) Care should be taken
that no other activity is going on while the benchmark suite is running. Past
experience on the GP1000 has shown that other activities on the machine can
corrupt TWOS timings, even if TWOS is given its own cluster to work in.

1
1613

3

Other platforms may permit some of their nodes to run TWOS
independently while other nodes do other work, without impacting the
TWOS timings, but testers should verify that this is the case, not just assume
it.

If the benchmarker is not watching all of the runs at all times, he -night want
to use the configuration file batch command to allow TWOS to abandon any
runs that trap to tester and proceed on with the command file. Otherwise, a
single failed run early in the command file may prevent that file from
producing much useful data. See section 2.2.3 of the TWOS User's Manual 3
for details on the batch command. Be careful to remove the batch command
from configuration files before making runs for debugging purposes, as any
runs made with the batch command will bypass tester and merely exit upon I
detecting any problem.

When all runs have completed, the user must check them to ensure that all I
of them were correct. This check is performed with the check/measure
program, described in the TWOS User's Manual, section 7.1. The measure
version of this command should be used to produce measurements files U
containing one summary line for each run made. A separate measurements
file should be produced for each of the three simulations. Once the
measurements files have been produced, the benchmarker should examine
each of them to ensure that all runs produced proper results. The correct
number of committed events and committed messages can be found in the
TW 2.6 benchmark included in Appendix C of this manual. Any runs
producing incorrect results must be done again, until they produce correct
results. If more than a handful of all runs in a benchmark produce incorrect
results, then the version of TWOS being benchmarked should be regarded as
being insufficiently bug-free to benchmark.

The measurements files contain 4 lines for each application for each number
of nodes. The graphs to be plotted need these four lines to be combined into a
single line. The collapse program, described in Section 7.1 of the TWOS
User's Manual, will automatically do the averaging and combination of these
lines. This program must be run once for each of the three measurements
files.

Once the TWOS rcns are complete, the user should make one sequential
simulator run for each application to obtain a timing to use for speedup
comparisons. For complete safety, the sequential simulator runs should be
made when the parallel machine has no other activity, even though other
activities should not impact the sequential run times. The benchmarker
should use the -s switch with these runs to produce an XL ISTATS file from
each simulator run. When the run completes, the benchmarker should take
care to rename these XLSTATS files to something that will uniquely identify
them as part of this benchmark.

162

The benchmark curves are typically plotted using the Excel spreadsheet
program on a Macintosh, but the benchmarker should feel free to use
whatever plotting software is most convenient. The collapsed measurements
files are set up with a tab between each field, and with a line of header
information first, which meshes well with Excel.

For each application, four curves must be produced. The first is the timing
curve, which plots run time versus number of nodes used. This information
is directly available from the measurements file. The second curve plots
speedup, which is obtained by dividing the run time for the sequential
simulator by the run times in the measurements files. The third curve is the
ERBO curve (events rolled back over), which is calculated by subtracting tl~e
number of events committed from the number of events completed. Both of
these values are available from the measurements file. The final curve plots
the number of process migrations performed for each set of runs. These
numbers are also directly available from the measurements file. In addition,
the spreadsheets containing the collapsed versions of the measurement files
should be printed and included in the resulting benchmark document.

Appendix C contains examples of what each curve has looked like in past
benchmark memos. The benchmarker should feel free to use his own
favorite format, but should strive to ensure that all information in the format
previously used is also available from his preferred format. Appendix C also
contains a sample of the outline of a benchmark memo. Again, future
benchmarkers should feel free to adapt this format to their own needs.

3 All data from the benchmark should be moved onto secondary storage. This
data includes all statistics files produced by the individual runs, the regular
and collapsed measurements files, and the statistics files produced by the
sequential simulator runs. In the past, these data files have been saved on
Macintosh floppy disks, but magnetic tape might be a more appropriate
medium. The benchmarker should also ensure that a tape version of the
entire release directory of the benchmarked version of the software is
preserved somewhere safe.

163

I
3
I
I
U
I
I
U
U
U
3
U
I
I
U
3
U
I

164

I

new version of TW 2.6 taking 6-9 seconds longer, between a 5% and 10%
increase in run time.

The maximum speedup obtained for Warpnet under TW 2.6 was 27.00, on 72
nodes.

The timing chart and ERBO chart for Warpnet under TW 2.6 show no effects
ll worthy of note. The migration chart does not show as strongly the odd shape

of the chart for TW 2.5, in which migrations fell off as more nodes were
added. But there is still a flattening of the number of migrations at higher
numbers of nodes, and a dropoff at the largest number of nodes. Further
tuning of dynamic load management might be in order. it's also possible that
the slight decrease in performance of Warpnet under TW2.6 is related to
improper migration decisions having a greater effect as more of them are
performed. Work is underway to improve dynamic load management for
these cases.

C4. STB88 Results

3• STB88 fairly normal performance, with one exception. At eight nodes, the
run time for STB88 shoots up dramatically. (The difference is more visible on
the timing chart than the speedup chart.) The ERBO chart shows that the 8
node runs had almost four times as many events rolled back as the 6 node or
10 node runs. There were also more migrations for the 8 node run than its
neighbors, though the total number of migrations is so small (twenty, at 83l nodes) that putting the blame entirely on poor migration decisions seems
questionable. Examining the four runs that comprise the 8 node point, three
of them were actually longer than the average run time, with a single,
somewhat shorter run lowering the average by 15 seconds or so. Therefore,
the poor eight node performance cannot be blamed on a single run that
performed very, very poorly.

As might be expected, most of the statistics for the 8 node point are higher
than those for its neighbors. For instance, nearly 700,000 positive messages

Il were sent, instead of a bit over 600,000. One statistic particularly stands out,
however - the number of events started jumped from 435,000 (for 6 nodes) to
645,000. At ten nodes, it cropped back to 470,000. This statistic is indirectly
shown in the ERBO chart.

Another dramatic statistical difference is in the number of tells. (Actually,
nowadays, the number of schedules.) This number jumped from 655,000 to
948,000, a difference of nearly 300,000. However, fewer than 100,000 more
positive forward messages were actually sent. Apparently, lazy cancellation
saved the resending of almost 200,000 messages, in this run. It is unclear
whether this was a good thing or a bad thing. If the messages in question
were eventually committed, it was a good thing. If they were not, it was a
very bad thing, and could explain the performance discrepancies.

166

I
I

Further investigation of this anomaly is warranted. Tests with dynamic load
management turned off, and tests with aggressive cancellation turned on,
would be good starting points. The former would indicate whether the 3
difficulty has to do with a poor configuration that dynamic load management
has trouble correcting. The latter would indicate' whether lazy cancellation is
causing a problem, here. It is interesting to note that the same configuration I
did not cause this problem in TW 2.5, but it is hard to say what changes in
TW 2.6 could have caused the change in performance. 3
Apart from this anomaly, the performance of STB88 under TW 2.6 is pretty
steady. The speedup curve trends upwards almost linearly. There is another
interesting phenomenon observable in the migrations chart. At even U
multiples of 16 nodes, the number of migrations jumps. These jumps aside,
the migration chart is fairly smooth. This data suggests that there is
something about round robin assignments on multiples of 16 nodes for
STB88 that causes greater observed imbalances in load. Perhaps the order of
grid definition in the configuration file leads to poor clustering of busy vs.
idle grid objects when 16 node multiples are used. However, we see no
corresponding jump in the run times of configurations for these cases, so
apparently dynamic load management is successfully handling any
imbalances.

Compared to the performance of STB88 under TW 2.5, TW 2.6 is mostly an
improvement. The eight node point is much worse, and a few other
configurations run a little slower, but most configurations run a little faster.
The major exception is that, between 56 and 68 nodes, TW 2.5 provided
somewhat faster run times. However, the 72 node configuration runs faster
under TW 2.6, giving a maximum speedup of 27.44, versus 25.56 under TW
2.5. Part of the improvement is due to a longer sequential simulator time I
under TW 2.6, but the Time Warp run time also improved 5%.

C5. Pucks Results 3
Pucks has a very regular set of performance curves under TW 2.6. The only
curve that is not regular is the migration curve. TW 2.6 performs few or no 5
migrations for small numbers of nodes. At large numbers of nodes, however,
many migrations are performed, far more than were performed under TW
2.5. At large numbers of nodes, Pucks is inherently unbalanced, as it has too
little parallelism to make good use of many nodes. Many migrations are
performed in a fairly futile attempt to make use of nodes for which there is
simply no work available.

While these migrations seem to do little good, they also do little harm. Pucks
gives similar performance under TW 2.6 as under TW 2.5. Most run times
under TW 2.6 are one to five seconds slower than under TW 2.5. Because of

an increase in the run time of the sequential simulator, the maximum

167

speedup of Plucks under TW 2.6 is actually better than under TW 2.5, going up
from 12.8 to 13.1.

One exception is the three node point. Under TW 2.5, a three node Pucks run
took 1977 seconds. Under TW 2.6, it takes 1472 seconds. An examination of
the number of message sendbacks shows the reason for the decrease. Under
TW 2.5, nearly 39,000 messages were sent back for three node runs. Under
TW 2.6, only 5 messages were sent back. The other two applications
performed relatively few sendbacks at low numbers of nodes, even under TW
2.5, so there was no significant improvement in their performance for those
configurations. This result indicates that our attempts to improve the
memory situation have worked, to some extent.Ua
C6. Comparisons With Earlier Benchmarks

Generally, but not universally, TW 2.6 runs a bit slower than TW 2.5. The
speedup figures conceal this slowdown, since the sequential simulator seems
to have slowed even more, but direct timing comparisons reveal it. In a few3 cases, TW 2.6 runs faster.

The most probable culprit for the loss of speed is changes in dynamic load
management parameters that permnit more migrations. These changes will be
examined before TW 2.7 is released, and possibly further tuning will be
performed.

C7. Conclusions

Despite minor differences in performance, TW 2.6 is characteristically similar
to TW 2.5. In the single case where a memory shortage was causing a
problem under TW 2.5, TW 2.6 seems to have solved it.

U C8 Charts and Raw Data

The following pages contain the charts mentioned in earlier sections, as well
as worksheets containing the data used to make the charts, along with much
other data. The worksheets are the collapsed versions, with the four runs per3 point averaged into a single line of data.

1
3
3

I 6

I

Warpnet Uenchmark Data

Warpnet Timing Chart

C CP 1000/MACH
0 004 runs per point I
o 600 " "11/20/91

n 400 "PLR

200I

0 8 16 24 32 40 48 56 64 72

Nodes,

Warpnet Speedup Chart

30.00 3
S 25.00 , "

P 20.00 • "
e _ TW 2.6 Benchmark
e 15.00 * GP (000o/ MACH

d 10.00 * 4 runs per point
U • 11/20/91P R!

p 5.00
P

0.00 m ELI

0 8 16 24 32 40 48 56 64 72 3
Nodes

I
I
3

169 U

Warpnet ERBOs Chart

35000

30000 a

E 25000
R 20000
B a TW 2.6 Benchmark

15000 U CGP 1000/MACH
0e * 4 runs per point

s 10000 81 11/20/91

5000 PLR

0 ' ! I "
0 8 16 24 32 40 48 56 64 72

Nodes

Warpnet Migration Chart

M 70

i 60 U U

r .S40 a sa 4W 2.6 Benchmark

t 30 P' 1000/MACH
4 runs per point

20 11/20/91
0 1 PLR

0 8 16 24 32 40 48 56 64 72

Nodes

170

Ir

I
U
3
I
I
I
I
I
U
U
3

I

I
171

I
I
I
I
I
I
I
!

17

!

STB88 Benchmark Data !

I
STB88 Timing Chart

2500

S 2000

e "W 2.6 Benchmark

c 1500 GP 1000/MACH 3
4 runs per pointO • =11/20/91

n 1000 PLR £
d ,
S 500o

"0 4 I 1 1 1 1 i
0 8 16 24 32 40 48 56 64 72

Nodes I

STB88 Speedup C'iart 3
30.00 3

S 25.00 3 1

P 20.00

e
e 1500 S W 2.6 Benchmark

d GP 10D0/MACH

10.00 4 runs per point
U 5= 11/20/91

p 5.00 Pm1LRU

0.00
8 16 24 32 40 48 56 64 72

Nodes 3
7

173

1

I

STB88 ERBO Chart

250000

200000E
R 150000 " T

TW 2.6 Benchmark
S100000 GP 1000/MACHI

4 runs/ per point
O 100S50 •"""i"4mpron 11/20/91,L

50000.PL

0 Is --
0 8 16 24 32 40 48 56 64 72

Nodes

STB88 Migrations Chart

M 40 o
i 35

9 30U
.- r 25 "

a 20 TW 2.6 Benchmark
t aP 1000/MACH

i 15 4 runs per point

O 10 * 11/20/91
PLRn 5 ..

3 0S 0 8 16 24 32 40 48 56 64 72

S~Nodes

1743

3
U

II
U
I

S
.I

Ii
II
N

II

U1
U1
3

II
U

g

II

Ii
U

176I

3

Pucks Benchmark Data n3
Pucks Timing Chart

1600

S 140
e 1200

c 1000 7W 2.6 Benchmark

80GP 1000/MA0
Pucks 4 runs per pointn 600- , 11/20/91

d 400 PLR

S 200 a U

S 12.00

U 3 I

e 8.00 27W 2.6 Benchmark

e 6.0 GI' 1000/MACI-

d 6.u C runs perpoant
4.00 L 1/20/91

P 2.00
P L

p 0.00 1

0 8 16 24 32 40 48 56 64 72

Nodes

177

e • G IO00MACHU

I

Pucks ERBOs Chartn
500000 •

400000350000

R 300000 1W 2.6 Benchmark

S2P 1000/ MACH
0 200000 4 runs per point
S 150000 11/20/91100000- P LR

w0

0 8 16 24 32 40 48 56 64 72

* Nodes

U
Pucks Migrations ChartU

M ISO
i 160 TW 2.6 Benchmark

g 140 GI'1000/Mach
4 runs per pointr12 u11/20/91

a 100 PLR . _
t 80-8
i 60
0 40
n i 20
S 0 " 1

0 8 16 24 32 40 48 56 64 72

3• Nodes

I

3 178

U
I!
I

II
S
I

II
iI
a
I!
I!

I1

U

I!

II
U

I
I
I!
I!

I!
18

I!

I

Appendix D: TWOS Overhead Times I
D1. Introduction U
Memos PLR: 363-88-31 and PLR: 363-88-32 contained measurements of certain
overheads for Time Warp for version 1.10. Since those memos came out,
TWOS has changed considerably, as has the platform TWOS runs on. Those
memos were based on data for TWOS running on the Mark3 Hypercube
under Mercury, rather than the GP1000 under Mach. Also, TWOS has
changed internally in many ways that might affect these overheads. This
memo presents up to date overhead measurements for TW 2.5.1 running
under Mach on the GP1000.

These measurements were gathered using a modified form of TW 2.5.1, with
the ping simulation. The version of TW 2.5.1 used has a few changes not in
the baseline TW 2.5.1, but none of those changes should affect these runs. In
all cases, the measurements are the average over 10,000 occurrences of
whatever is being measured.

D2. State Saving Time

State saving time for TW 2.5.1 was first measured using a 4-byte state (which
is a header plus one integer, only), then with progressively larger states. Table
D.1 shows the results. The minimal state saving time was .26 milliseconds. U
Saving 1000 byte states took .49 milliseconds.

State saving thus takes around .26 milliseconds plus .023 milliseconds per
hundred bytes. This is slightly faster than TW 1.10, both for the zero byte case
and the incremental cost of 100 extra bytes of state. Changes in the way TWOSmakes memory allocations and changes in the assembly language byte
copying routine probably account for these differences.

I

I
3

181

I

Ui

State Size State Save Time State Save Time
(in bytes) (in milliseconds) (in milliseconds)

TW 2.5.1 TW 1.10

4 .26 .27

100 .28 .29

200 .30 .32

1 300 .33 .35

1 400 .35 .37

50o .37 .40

1000 .49 .53

Table D.A: State Saving Times

D3. Message Sending Overheads

Message sending latency was measured in two ways. The first way was to
measure the time between when a message was requested by the user until
the time that it was enqueued at the receiving process. The second way was to
measure from the time of the request to the time at which the resulting event
was started. This second way corresponds to the measurements made for TW
1.10.

It takes .97 milliseconds to get a zero byte message into the input queue of a
receiver located on the same node as the sender under TWOS 2.5.1, and
approximately 2.3 milliseconds to get it to the input queue of a receiver on a
different node. (Provided the sending node is not node 0. It takes 2.6
milliseconds if the sender is node 0. This difference is probably due to delays
caused by node O's extra responsibilities in the GVT protocol.)

Note that these times are latencies, not entirely overhead. The sending node
can perform work on other activities in less than 2.3 milliseconds, and the
receiving node can do other work during the early part of that time. Given

that transmission time on the GP1000 is negligible, almost all of this 2.3
milliseconds would represent overhead on some node, however.

The second method gives a delay of 3.76 millisecoL.ds from the time a
message is sent until the receiving process can start execution if the receiver is
local, and a delay of 4.04 milliseconds if the receiver is remote. On TW 1.10, it
took only 2.75 milliseconds for the same operation if it was local, and 3.71
milliseconds if it was remote. Of course, in the remote case a large
component of the TW 1.10 latency was due to the time for physical

1 182U

transmission of the message through the Hyvpercube, which is negligible in
TW 2.5.1. Between TW 1.10 and TW 2.5.1, we have added a millisecond of
delay (probably actual overhead) to the delivery of an on-node message. We
should perhaps try to eliminate some of that overhead.

D4. Rollback Overhead

Rollback overhead is hard to measure, in general, for a number of reasons.
Rollbacks do not take place in one continuously run piece of code, as state
saves do, and rollback latency is not of much interest, unlike message passing I
latency. However, part of the rollback cost can be easily gathered, for a simple
case. When TWOS delivers a message, it calls rollback () after queueing the
message to set up the receiving process to run at the proper time. I
rollback (), despite its name, does not perform all activities associated with
a rollback, but it does do many of them, including destroying states and
cancelling messages. We can measure the overhead involved only in this S
routine with little difficulty.

In the case of ping, all rollbacks are trivial - they roll back from +- to the time U
of the arriving message. There are no states to discard and no messages to
cancel. The time necessary to perform such a minimal rollback is around .2
milliseconds. This overhead is part of the 3.76 millisecond overhead that is
incurred to delivery a message on-node, as discussed in section 3.

D5. Per Event Overhead U
Ping is well suited for measuring per-event overhead, when run on 1 node.
TWOS running ping is never idle, so all time spent is either on user events
or overhead. A one node run of ping for 10,000 events takes 41.74 seconds on
I node, with 2.38 seconds being spent running user code. Thus, about 39
seconds are spent on overhead operations, yielding a per-event overhead of
3.9 milliseconds.

It's possible that the run would have finished up to one second sooner, due to I
timing of GVT calculations, but no longer. The difference between the value
of GVT at the last tick before +- and the virtual time of the last event was
very small, so probably most of this final GVT interval was spent waiting for N
GVT to start. Therefore, the total time spent on overhead not counting
waiting for the last GVT tick is closer to 38 seconds than 39, yielding a per- 3
event overhead of 3.8 milliseconds.

This 3.8 millisecond per event figure matches closely the 3.76 millisecond
one-node latency from message delivery to event start presented in section 3.
TWOS running ping does very little other than deliver messages and run
events. GVT calculations must take place, of course, but one might expect
them to happen in between events, causing their effects to be factored into the
3.76 millisecond figure. Dynamic load management was turned off for these

183

U
measurements, so it contributes no overhead. The only other overhead costsnot counted in the one-node latency are some startup costs and some context
switching, which might account for the missing .04 milliseconds. Note also
that the resojution of the Butterfly clock is 62.5 microseconds, so inaccuracies
in the measurements could alone account for the missing time.

D6. Lazy Cancellation Overhead

All of the measurements produced so far have used TWOS with lazy
cancellation. Aggressive cancellation is still an option in TWOS, but lazy
cancellation is used by default. The ping benchmark cannot benefit from lazy
cancellation, since none of its messages are ever cancelled. On the other
hand, lazy cancellation should be very fast for ping, since the queue of
messages to examine for lazy cancellation on either a rollback or a message
send are quite short. Running ping with lazy cancellation can thus give ussome idea of the overhead of lazy cancellation when it has no benefits.

Turning on aggressive cancellation decreases the run time of ping under TW
2.5 from 41 seconds to 39 seconds. Considering the run time of the processes
(unchanged) and correcting for the possible lag in computing the final value
of GVT (about 2/5 of a GVT cycle, or .4 seconds), the per-event overhead of
TW 2.5 with aggressive cancellation is 3.55 milliseconds, a decrease of .25
milliseconds per event.

The time required to get a message from the sender to the input queue of the
receiver, on node, decreased from .97 msec to .945 msec, almost the entire
decrease due to aggressive cancellation. This measurement suggests that the
routine that tries to determine if the message to be sent is already in the
output queue is largely the cause of the extra delay in lazy cancellation, rather
than extra costs in the rollback process when a process rolls back from positive
infinity upon receipt of a new message. This routine is called msgfind (), solooking at ways to make that routine run faster would seem a promising way
to reduce lazy cancellation overhead.

1U
I
I
U

184I

I

D7. Conclusions I

Table D.2 shows the basic minimal TWOS overheads for TW 2.5.1 running
under Mach on the BBN GP1000. S
Operation Overhead

Per Event Total Overhead 3.8 msec I
Message latency (to queue)

On node .97 msec

Off node 2.3 msec 5
Message latency (to event) I

On node 3.76 msec

Off node 4.04 msec 9
State Saving

0 byte state .26 msec

Per 1000 bytes + .23 msec 9
Partial Rollback Overhead .2 msec

ILazy Cancellation .25 msec

Table D.2- TWOS Overhead Times Summary

1
U
I
U

I ~185U

I
II
i
I
I
B

II
I
II
U
p
I
II

Appendix E: TWOS Tools Internals

This appendix describes the internal details of some of the tools used in
conjunction with TWOS. The appendix covers only the most frequently used
tools, check/measure, and collapse. The internals of the configuration
balandng tool, the instantaneous speedup tool, the graphic fp lot and mp lo t
tools, the memory analysis tool, and -the graphic dynamic load management
tool are not discussed here. Not only are they used less, but they are also
changed less often, and are much more complicated.

El. chock/meaaure Internals

check/measure, whose use is described in the Time Warp User's Manual,
Section 7.1, is meant to check the consistency of a single TWOS run, while at
the same time optionally compressing a TWOS statistics files into a single
line and saving it to a measurements file. The consistency checks are also
made by reading the statistics file.

check/measure works in two phases. First, it opens the statistics file and
reads it, line by line, accumulating various statistics in variables. Once the file
has been completely read, check/measure moves on to its second phase, in
which it compares some of these statistics to each other to check for
consistency and optionally formats a line of output for the measurements file.

The first phase is complicated by the fact that the measurements file contains
many types of lines. Chapter 22 described these many different types.
check/measure must determine what type each line of the measurement file
is so that the proper statistics can be extracted. The program loops
repetitively, reading a single line of the statistics file into a buffer. Then the
buffer is scanned to determine what sort of line was read. A normal line of
phase statistics is checked for first. If it was not such a line, then every other
possibility is tested. For each, if a match was found, the appropriate statistics
variables are added to, and the program goes on to read a new line into the
buffer. In some cases, there are no statistics variables to be changed, and the
next line is simply read.

The most complicated case occurs when the line was indeed a line of per-
phase statistics. A variable used to keep track of the total number of phases is
incremented, in this case, then a large number of statistics variables are
adjusted. For most of these variables, the contribution for this phase is 3
simply added into those already collected. In a few cases, like queue length
maxima, the new maximum is compared to the previously seen one, and a
change is made only when the new one is bigger. After all variables are I
adjusted, the next line of the statistics file is read.

1
1871

Once all lines have been read, check/measure is ready to print out its results
to the standard output. It first prints the name of the configuration file used
to run the simulation (gotten from the statistics file). Then it prints a header
explaining the values of the third line, which contains the number of objects
in the simulation, the name of the statistics file, the number of positive and
negative event messages sent, the number of event messages committed, the
number of events started and completed, the number of event bundles
committed, the number of events interrupted and rolled back in the middle,
the number of states saved, and the number of states committed.

check/measure then performs consistency checks. By matching various
statistics against each other, check/measure can determine if this run
completed correctly. (Some kinds of errors cannot be detected this way, but
many can.) Some of these checks are very simple. For instance, the number
of positive event messages sent must equal the number received. Others are
a bit more complicated. For instance, the number of positive event messages
received minus the number of negative event messages received minus the
number of positive messages sent in reverse plus the number of negative
messages sent in reverse must equal the number of event messages
committed. (This equation tries to keep track of everything that canI legitimately happen to a positive event message that was received - 't can be
committed, or cancelled, or returned to the sender, or cancelled when a
negative message is returned to the sender.)

As each equation is checked, a line is printed out indicating the results of theI check. If the equation balances, the line simply identifies the quantities in the
equation. If the equation does not balance, the line is preceded by two
asterisks, and followed by the amount by which the balance failed. *

3• After all balancing equations are checked, a few more lines are printed out.
One of these shows the version of TWOS used, the elapsed run time, and the
number of nodes used. Another shows how much times was spent runningU objects, and another how much of that time was committed. The critical path
length and the final object on the critical path are printed out, here, too.
However, unless certain TWOS features were turned off, this length may be
incorrect. (See Chapter 16 for details.)

Certain occurrences during a TWOS run can artificially lengthen the run.
These include page faults, nodes going to sleep because of long running
events (or other causes), and migration naks, which cause a migration to start
again from the beginning. If any such occurrenc-'s happened during this run,
the next three lines of the output from check/measure alert the user to their
presence, and the fact that they may have corrupted the run times. The user
might want to rerun the application to get a cleaner run time, as sometimes
these problems disappear from run to run. If these problems recur frequently,
the system developer might need to investigate them.

188

3

I
I

At this point, if none of the consistency checks failed, check/measure prints
out a line indicating that they were all OK. Less happily, if some of the checks
failed, check/measure instead prints a line indicating failure.

If the program is being run under the name "check," its execution is
complete at this point. If it is being run as "measure,", it must also print out a
line to a measurements file. The measurement file was opened earlier, if it
was needed. If the user provided a file, that file name is used. If not, the file
"Measurements" is used. In either case, check/measure tests to see if the file I
has any text in it. If not, check/measure first puts a header line into the file,
containing short text descriptions of each field in the measurements lines. In
either case, the collected data for the run is then printed out in a single line.
Appendix B of the Time Warp User's Manual contains a description of each
field in a measurements file data line.

When a new version of TWOS has been installed and compiled, the new
version of the check/measure program should also be compiled. Often, old
versions of this program will work correctly with the statistics files produced U
by new versions of TWOS, but not always. When this program is compiled, it
should be installed under both the name check and the name measure. A
link is usually the best way of ensuring consistency of the two copies.

E2. collapse Internals 3
A typical set of measurements for TWOS requires that multiple runs be made
for every situation to be measured, because of the variations in run time and
other TWOS statistics. Only by making multiple runs can the programmer U
have some confidence that the data gathered is representative of TWOS'
performance. Even when measure has been used to compress a run's result
into a single data line, however, scanning the, multiple lines in a I
measurements file associated with a single situation can be confusing and
difficult. collapse is a tool to help reduce the data gathered in multiple runs 3
into a single measurements file line, for examination and plotting.

At first glance, collapse's task would seem almost trivial. It needs to read all 3
identical lines and average each field in the line. In actuality, however, a
close examination of the data in the measurements file lines indicates that a
bit more work is required. First, not all fields are numeric. It does not make 3
sense to average the name of the configuration file, for instance. Second,
some of the fields contain maxima. Those fields should not be averaged
together. Instead, the maximum of the maxima should be selected.

To deal with these issues, collapse was written in a very general manner. It
can deal not only with those problems, but with combining lines based on
some key field other than the number of nodes, with fields containing
minima, and with types of averages other than the standard arithmetic mean.

189 n

In order to support this generality, collapse uses a data file to instruct it how
to handle each field of the measurement file's data lines.

A sample of this file can be found in the statistics subdirectory of the tools
subdirectory of the TWOS directory on the distribution tape. The file is
named benchformat .rmach, and is the version of the collapse data file used
for normal situations. This file contains five lines. The first line is

KEY nodes

This line instructs collapse that all lines in the measurement file with the
same number of nodes are to be combined. The second lines is

AMEAN ALL

This line instructs collapse that the arithmetic meiui of all fields is to be
taken, unless further instructions are given. The third line is

AMEAN OFF filename nodes sqmax iqmax oqmax mpagfs

This line tells collapse that the arithmetic mean of the fields named above
is not to be taken. The fourth line is

MAX filename sqmax iqmax oqmax mpagfs

which tells collapse to take the maximum of those fields. The fifth line is

COUNT time

This line instructs collapse to count the number of lines combined and
output that count in a field titled "time".

co 1llapse starts by opening some of its files. In addition to the measurement
file from which the data is to be read, collapse requires a measurement file
to write to, and a format file, as described above. The input measurements
file and the format file are opened at this point. Then co 1 lap s e reads the
first line of the input measurement file. That line should be a header line
containing the field names of all data fields in subsequent lines. If the header
line isn't there, or is unreadable, collapse exits. If the line can be correctly
parsed, the individual field names are saved in an array. This array consists
of many entries, each of which is a data structure that can store several
different pieces of data. The name of the field is one of those pieces.

Once the header line has been handled, the format file is opened. Each line of
that file is dealt with individually. Generally, reading a line of the format file
causes one or more entries in the array described above to have a part of the
data structure altered. For instance, the "AMEAN ALL" lines causes every
array entry to have a variable in the data structure set to indicate that the

190

I
arithmetic mean of that field should be taken, while the "AMEAN OFF" line
removes that data structure information from only the named fields' entries.

After the format file has been completely read, the remaining lines of the
input measurement file are read, individually. The key field is checked to
determine if any lines with the same key have been read yet. If not, memory
is allocated to hold data for all lines with this key, and certain data fields are
initialized to zero. Then, whether or not a previous line with this key has
been seen, the fields of the line that was just read are examined, one at a time.
For each, the entry in the array of field information is checked to determine
what to do with this field (average it, max it, etc.), and the proper operation is
performed.

Once all lines have been read in, the output measurements file is opened. I
The header read from the input measurements file is printed out to the
output file, in an augmented form. Each field is given a prefix that shows
what collapse did with that field. Also, if the format file contained a
COUNT line (as the example described above did), then an extra field marked
as a count field with the provided name is inserted into the header line, just
before the key field. After the header line has been written out, the data is
written. One line is written for each key value found. Once all keys have hadlines written for them, collapse is done, and doses its files.

U
U
U
I
U
U
I
I

191 U

I

I
I
I
I
I
I
I
I
I

I9

I

Appendix F: Unimplemented TWOS Features I
This appendix consists of two parts. Part 1 concerns the proposed event
cancellation facility. Part 2 concerns the proposed speculative computing I
facility. Each part describes a proposed design for the facility in question.
Little review has been done on these designs, and typically the design changes
during implementation, but these designs are probably fairly close to what
would have been implemented. These two designs can either assist someone
who needs to implement these features later, or can serve as a model of the
design of other TWOS facilities.

Fl. Event Cancellation

F1.1. Introduction

Message cancellation is one of the two major new features for TW 2.7. The
other is the ability to allow users to predict their output. The user interface
for both features was described in memo PLR: 366-91-11. This memo will
cover internal design issues of the message cancellation feature. A later
memo will cover the design of output prediction.

The message cancellation user interface specified in the earlier memo allowed
users to cancel their messages in two ways. First, they could use an
unschedule () call, which took the same parameters as the schedule () call,
and resulted in the cancellation of the matching message. The other method
was cancellation by reference using the cancel () call. This call takes a single
parameter, a unique identifier for the message that must be cancelled. Its
result is the same asunschedule(). Bothunschedule() and cancel()
permitted processes to cancel messages sent by other processes. Neither call
directly addressed the issue of cancelling dynamic creation and destruction
messages, though probably they will both permit it in the actual
implementation.

F1.1.1 TWOS Message Sending Review

Before proceeding to the detailed design of the new calls, a brief review of
message sending internals in TWOS is worthwhile. When the user wants to
send a normal event message in TWOS, he calls schedule (), providing the
receiver, receive time, message selector, text length, and text pointer for his
message. schedule () runs with the user's stack, not TWOS', so it has verylimited capabilities. Currently, all it does is some simple error checks and

some timings, then it calls switch back (). switch-back () is the routine
for switching from the user's context into the executive's context, and is given
a number of parameters, the first of which is the system routine that should
be performed to handle the user's request. In the case of sending a message, I
that routine is sv tell .

193 I

switch_back() sets up TWOS' stack to run sv_tell (), then calls it.
svtell () sets up the OCB's argblock field for this message, then sets its run
status value to cause the dispatcher to send out a message. sv tell () then
calls dispatch(), which will try to send the message immediately via
sv doit(). sv doit() may fail, but whether or not it does, control will
return to the main loop to determine what to do next. Eventually, the main
loop will reschedule the process that tried to send the message, the message
will be successfully sent, and control will return to the process.

On the destination end, when a message is to be delivered the system tries to
find the appropriate place in the receiving process' input queue. The system
will either find the correct place to put the message, or determine that the
incoming message annihilates a message already in the queue. This search
for the appropriate place in the input queue is performed on a message-by-
message basis, starting from the front of the queue. Each message has its
receive time and selector fields checked against those of the incoming
message; if those both match, TWOS does a byte-for-byte comparison of their
texts. If the texts fully match, and the messages are of opposite signs, they
annihilate. If any comparison fails, or the messages are of the same sign, the
new message is simply enqueued. Whether enqueueing or annihilation
occurs, the process will be checked for rollback.

F1.2. unschedule ()

The unschedule () call will rely largely on existing TWOS cancellation
mechanisms. It will behave exactly like a schedule () call, except that the
positive copy of the message will be retained in the local output queue and
the negative copy will be shipped to the receiver, rather than visa versa. The
positive copy is queued in send time order, meaning that it will probably not
annihilate with the negative copy of the message that is to be cancelled.
(Unless both the original message and its cancellation are sent from the same
event, which is a special case.) The negative copy is sent forward to the
receiving process. Assuming that this is a proper cancellation, the negative
copy will find a matching positive copy in the receiving process' input queue,
which was put there by the original schedule () call. The negative and
positive copies will annihilate, possibly causing a rollback if the positive copy
had already been processed.

Figure F1.1 shows an example of the results of a matching schedule () and
unschedule () call. Process A ran an event at time 100 that sent a message X
to process B, to be received at time 300. Process A then ran a second event at
time 200 that called unschedule () for message X. Therefore, process A has a
negative copy of X in its output queue timestamped 100, and a positive copy
timestamped 200. Process B has no copies at all, since the other positive and
negative copies of X annihilated in its input queue. Should the event at time
200 be rolled back, the positive copy of X will be transmitted to process B,

194

effectively rolling back the unschedule L) Should the event at time 100 also I
be rolled back, both the positive and negative copies of X would be

transmitted to process B, where they would annihilate, effectively rolling back
both the schedule () and the unschedule () . Should only the event at time

100 be rolled back, only the negative copy of X would be transmitted to B,
leaving the positive copy in A's output queue. If this sequence of events was I
committed, TWOS would signal an error, since the user has tried to cancel an

event that was never scheduled.

S iA x-° X+ B°

Figure F1.1: A Matching Schedule and Unschedule

F1.2.1 Basic unachedule () Internals

unschedule () will be a call looking very much like schedule (), as, in
essence, there is only a "one bit" difference between the calls. It will set up
certain fields and take clock timings, then use switch_back () to trap to the
executive. One of the parameters of switchback () specifies the routine
that the executive should execute once its stack is in place; that parameter is
set to svtell (), for schedule (), and should be set to the same value for
unscheduleO. sv_tell () should be altered to allow it to serve as a general
purpose message posting routinz. Relatively little code Li s v t e 11 (will
care about whether a normal event message or a cancellation is being I
handled, so the changes should be slight. The argblock field in the sending
process' OCB will need to be expanded to permit subsequent routines to
determine whether to send out the positive or negative copies of the message, U
and s v_t e 11 () will need to accept another parameter to permit it to
distinguish between the two routines that might have called it.

sv_doit () will also require minor alterations, as it currently assumes that
the positive copy of the message is sent to the receiver and the negative copy
enqueued. unschedule (), of course, needs to do the reverse, so some code in U
sv doit () will need to be changed to permit either version of the message to
be sent, and either version to be enqueued, depending on whether
svdoit () is servicing a schedule () or an unschedule () call. Otherwise, U
little in sv doit () should need to be changed.

195 f

No new code or code changes should be needed on the destination end to
support unschedule () . The message enqueueing code in
nq_input_message () is already prepared to deal with an arriving negative
message about to perform a cancellation. From the receiving process' point of
view, there is no difference between this user-requested cancellation and a
cancellation due to rollback. The rollback code is also already designed to do
the correct thing when the negative message arrives.

F1.3. cancal ()

cancel () is somewhat more complicated than unschedule (. cancel ()
takes a unique identifier for a message and causes the cancellation of the
message that was issued that identifier. Unlike unschedule (), the user need
not know the selector of the message or its text. (The receiver and receive
time are contained in the unique identifier.)

cancel() could be implemented in several different ways. The unique
identifier could be used simply as a key into the sending process' output
queue. The identifier would be used to find the negative copy of the
matching message, a new pair of message copies would be made (one
positive, one negative), the negative copy could be sent and the positive copy
queued. The advantage of this method" is that it largely reuses existing TWOS
code for message cancellation. The only new code is the code that finds the
referenced message from its unique identifier and makes the additional
copies. The disadvantage is that this method does not permit simple
cancellation by third parties - process Z could not easily use cancel () to
cancel a message sent from process X to process Y, since process Z would not
have a copy of the message in its output queue. Perhaps more importantly, it
also will not work well with temporal decomposition.

cancel()

SG[200,
+o)

Node 1 Node 2

Figure F1.2: A Third Party Cancellation

196

If an object can be split into multiple phases, then a cancel () call may try to U
cancel a message that is not stored in the local phase's output queue. Figure
F1.2 shows an example. Objert C has been split into two phases, at time 200.
The phases are named G(--. .00) and G[200, +-o), and are located on different
nodes. G(-o,200) has se.Lt message Y to object H at time 100, and has a
negative copy of Y in its output queue. G[200, +-) runs an event that tries to f
cancel Y using cancel (). (Note that there would be no difficulty if G[200, +-)
used anschedule (), instead.) But G[200,+-) does not have a local copy of Y.
For the cancellation to succeed, G[200, +-) would have to forward the
cancellat~on request to G(-o,200), which would find the negative copy of Y,
make two new copies, and send the negative copy to object H.

There are still further complications, though, as the new positive copy must
be queued by G[200, +-), not G(-a, 200). If the positive copy is not queued at
G[200, +-), then rolling back the event that caused the cancel () would be U
very difficult, as there would be no local record of that operation. So the
positive copy would have to be sent to G[200, +-) in such a way that that
phase would realize the message should be put in its output queue. More U
complications arise if the phases split in the middle of this process. Similar
complications arise if you want to support third party cancellation of
messages.

An alternate method of implementing cancel () would be to have the call
create an instance of a unique cancellation message type. Messages of this Itype would count as user messages for systems purposes, but would have only

one effect - the cancellation of some other user message. Such a message
would not need to contain the selector or text of the message to be cancelled,
which would preserve it from the troubles illustrated in Figure F1.2. When
G[200, +-) executed a can c e () for message Y, two copies of a special
cancellation message would be created. The positive copy would be sent to
object H, the negative copy would be stored in G[200, +-)'s output queue. The
only contents of the cancellation message would be the unique ID. (The
receiver and receive time would be implicit in the message header.)

When the positive copy arrived at H, H's input queue would be searched for a
message with the same receive time and unique ID. When found, the
positive copy and special cancellation message would not annihilate. Instead,
they would simply be queued together. But no user event would be run for
that virtual time at H, unless H has some other message also for that time. In
effect, the special cancellation message would make the presence of the
positive copy invisible to the Time Warp scheduler. (The messages cannot
annihilate here because the cancel - call might be rolled back. If it is, then p
G[200, +-) will have only a negative .opy of the special cancellation message
to send to H, which cannot take the place of a full copy of the message. Thus,

197 I

the receiver must make sure a copy of the actual message text is saved, in case

the cancellation is rolled back.)

F1.3.1 Unique Identifiers

schedule () needs to return the unique identifier for the message being sent,
in order to permit cancel () to later cancel it. This unique identifier consists
of the name of the receiving object, the receive time, and a unique ID, which,
in turn, consists of the node number of the node hosting the sending phase
and a unique integer within that node. The receiver and receive time are
needed to ensure that the cancel () call can correctly route its cancellation
message. The unique ID is needed to guarantee correct identification of the
message to be cancelled.

The unique identifier cannot be determined until lazy cancellation has been
checked, because messages not resent due to lazy cancellation must return the
same unique identifier as they returned the first time they were sent. Figure
F1.3 illustrates the problem. Object A has sent message Y to object B. Y is
assigned unique identifier <uidl> (figure F1.3a). The negative copy of Y is in
A's output queue, the positive copy in B's input queue, and a copy of <uid 1>
is stored in A's state, in case A later needs to cancel Y.

schedule (Y)

<uid 1>

A Yuid B

<uld 1>

Figure F1.3a: Y Is Assigned a Uid

198

U
3

Object A then rolls back and re-executes the event, and again generates
message Y. Lazy cancellation allows the system to avoid resending message Y,
but this second schedule () call for Y returns <uid2> (figure F1.3b). Since
lazy cancellation was used, the old version of Y is left undisturbed. (If the fact
that a new uid was generated caused lazy cancellatic' to cancel Y, lazy
cancellation would never avoid message resending, so the negative copy of Y
must not be shipped to B.)

schedule (Y) I
<uid 2>

A <Y~ L 1 3

<uid 2> I

Figure F1.3b: Y Is Assigned a Second Uid 3
If <uidl> < <uid2>, then the cancel () call will be unable to properly cancel
message Y. <uid2> will be saved in some special place in A's state, and,
during a later event, A may choose to cancel Y. If it does, by calling cancel (), I

A will provide <uid2> as cancel ()'s parameter and TWOS will send off a
special cancellation message with that unique ID. Since the receiver and 3
receive time of Y did not change, the special cancellation message will go to B,
the right object. However, figure F1.3c illustrates what will happen at B.
Message Y's copy at B still has <uidl>, since lazy cancellation did not update 3
it. The special cancellation message contains <uid2>, so it does not match
with Y and does not cancel it. 3

cancel (<uid2>)

A ccancel+ + B
<uid 2> 1<uid 2> <uid 2><ud13

Figure F1.3c: The Cancellation Does Not Match Y 3
One alternative would be to change the uid in the negative copy of Y to <uid
2> when it is resent by the user. This method does not work either, however,
as B's copy of message Y still has <uid 1> attached, so the cancellation
mechanism cannot match the special cancellation message with Y. One can
imagine special schemes for the system to automatically to send the new <uid

199

2> to B, making sure that the positive copy of Y was marked with the new

unique identifier, but such schemes are cumbersome and would negate much
of the benefit of lazy cancellation, since an extra message to carry the unique
identifier update would be required.

Therefore, after resubmitting a message not sent due to lazy cancellation, the
sender must be given back the same unique ID as he was when the message
was first submitted. Fortunately, that unique ID is available in the negative
copy of the message still in the output queue. (That copy must be there, or
lazy cancellation does not take place and a normal send is performed,
instead.) The only trick is to get the unique ID back to the user.

Referring back to section F1.1.1, lazy cancellation is checked early in the
routine sv doit 0(. That routine, however, already has a meaningful return
value, so sv do it () cannot return the unique ID already sent. The unique
ID must be-available when TWOS returns from schedule (, however.
Therefore, we must use some other method of getting the information
known only in svdoit () to schedule (), several steps up in the stack.

Probably the easiest method will be to have sv_doit () store a unique ID in
the sending OCB's argblock structure. Sending a message requires filling the
argblock structure with all necessary information, including receiver, receive
time, and a text pointer. These fields are all available in s v_t eli 0, so that
routine fills them in for sv doit W's use. We must add one further field toI the argblock structure, a unique ID field. Unlike the other fields in the
argbiock structure, this field would be filled in by s v_do it () for use by
schedule (). If lazy cancellation saves retransmission of a message, the
unique ID from the negative copy of the message would be copied into this
field by sv doit (). If the message actually had to be sent, sv_doit () would
generate a new unique ID and copy it into the argblock field. When
schedule () gets control again, as a result of a switch over () call from the
main TWOS loop, it can construct the entire unique identifier from the OCB's
argblock fields.

P1.3.2 Basic cancel () Internals

I" When a cancel () call is made by the user, the system will proceed in much
the same way as it would for any other message send. cancel () will set up
switch...back() to call svcancel(). In svcancel (), the data provided by
the user will be copied into the argblock structure. The receiver and receive
time are retrieved from the unique identifier that serves as cancel ()'s only
parameter, and the text length is set to 0. There is no text body. The argblock's
message type flag must be set to indicate that what is to be sent is a
cancellation, rather than a regular event message, dynamic create message, or3 dynamic destroy message. sv cancel () will need to generate a new unique
identifier, as we will allow cancellation of cancellations, should application
programmers want to use them.

200I

I

sv doit () should be able to handle this call with little or no alteration. i

On the receiving end, the receiving process' input queue would be scanned
for a normal event message matching the cancellation message. Text and
selector would not be considered, only receive time and unique ID. Only a
positive copy of the cancelled message will match a cancellation message. If a
negative copy was-found in the queue, it would not be affected by the arrival
of this special cancellation message. In any case, whether a match was found
or not, the special cancellation message is simply put in the input queue. If a
positive copy of the message to be cancelled is in the queue, the cancellation
message is put in back of it. If the positive copy of the event message has not
arrived yet, the cancellation is enqueued in its proper place. When the U
positive copy does arrive, it is put in front of the cancellation message.

The rollback mechanism does the rest of the work. When go_forward() 3
calls earliestlater_inputbundle (), that routine will have to check to
see if the message it wants to choose is immediately followed by a matching
cancellation message. If so, earliestlaterinputbundle () keeps looking
for another eligible input message. Since earliestlater inputbundle ()
will never return a pointer to an event message with a matching cancellation
message, cancelled messages will never be scheduled.

However, the receiving process may have other messages for the same
virtual time. If they are queued after the cancelled message, everything will
go well. earliest later_inputbundle U will set its pointer to the first
such uncanceled message, and o b j he ad() will set up its event. If the
uncanceled messages are queued before the cancelled message, matters are a
bit more complicated. objhead() will call message_vector() to make a
copy of all messages for this virtual time for the user, but messagevector ()
must not make a copy of either the cancelled message or the special
cancellation message. messagevector () should merely skip them and go
on to the next message in the bundle. 3
If a cancellation message is enqueued without its matching event message,
go_forward () and message_vector() should simply skip over it, too. If
the cancellation message is the only message for this virtual time, no event i
should be scheduled. If there are other messages in the bundle, the user
should get no indication that an unmatched cancellation message is also in
the bundle.

At commit time, positive copis of message cancellations should be in input
queues, and should have matching positive event messages. Should the
commit mechanism find an unmatched committed cancellation message in
an input queue, it should flag an error and call t e s t e r () . Multiple
cancellation messages for a single event messages should also be flagged as an
error, during commitment.

201 I

Normal TWOS rollback mechanisms will apply to cancellation messages. If
the sender of a cancellation message rolls back the cancelling event (and lazy
cancellation does not detect that the cancellation message is resent), then the
negative copy of the cancellation message is sent to the receiver. Upon
arrival, it will annihilate with the positive copy in the receiver's input queue,
possibly causing a rollback, if the receiver's SVT is beyond the receive time of
the cancellation message. If there is no corresponding positive copy of the
cancellation message, the negative copy will simply be enqueued. An
enqueued negative copy of a cancellation message must be ignored, for all
purposes except annihilating its positive copy, when it arrives. If a negative
copy of a cancellation message is ever committed without annihilating,
TWOS should flag an error

Normal message sendback can be applied to positive copies of cancellation
messages. For this purpose, they can be treated the same as event messages.

F1.3.3 Cancellation and Message Priority

Time Warp proceeds by generating a wave of computation, some of which is
cancelled by a wave of anticomputation. Theoretical results demonstrate that,
in the infinite processor case, the wave of anticomputation must travel faster
than the wave of computation to guarantee that a finite computation will
complete under Time Warp. In the finite processor case, the cost of having
the anticomputation wave travel more slowly is not incorrect execution, but
inefficient execution. If the wave of anticomputation does not travel faster
than the wave of computation, Time Warp can process a lot of optimistic
garbage before it is all rolled back.

Superficially, user-requested cancellations might seem like part of the wave of
computation, rather than anticomputation. They are mirrored exactly in
sequential runs, after all. However, a closer examination of the effects of
user-requested message cancellations shows that they must be treated as part
of an anticomputation wave. The issues involved here are theoretically
complicated and not yet thought through, entirely. However, in the practical
question of how Time Warp 2.7 should handle the issue, we will simply treat
user-requested cancellations, both from unschedule () and cancel (), as
high priority messages similar to negatively signed messages sent for rollback
purposes.

unschedule () already sends normal negative messages, so few code changes
should be necessary to give correct priority to that version of user
cancellation. cancel (), however, sends a positive copy of a special message,
so the lower level code will need to be changed to recognize that this message,
while neither a system message nor a negative message, should receive
priority handling. In the code dealing with send buffers on the Butterfly, for

i
202I

I

instance, these messages should be permitted to use the send buffers currently I
reserved for negative messages.

A future memo will cover the theoretically correct methods of handling

cancellations and rollbacks of cancellations, from a priority point of view.

F1.4. Commitment, Statistics, and Other Issues I
As stated earlier, parts of the commitment code will need to be changed to
handle this new feature. There are new types of committed errors to check
for, for instance. Another change is that it will now become acceptable to
have committed positive messages in a phase's output queue. 3
We will need to keep track of several new statistics to monitor performance
of message cancellation. These will include the number of times
unschedule () is called, the number of committed unschedules (calculated I
from the number of committed positive messages in processes' output
queues), the number of times cancel () is called, the number of positive and
negative cancellation messages sent forward, the number of positive and I
negative cancellation messages received forward, the number of positive and
negative cancellation messages sent backward, the number of positive and
negative cancellation messages received backward, and the number of times
cancellation (of either type, kept in separate statistics) caused rollback. Wemay think of more important statistics, as they are needed. 3
These statistics must be accurately gathered, printed for each process into the
XLSTATS, and properly handled by check. check should not only read
these new statistics and produce a measurement file line including them, but -
should perform consistency checks, such as determining if the number of
positive cancels sent equals the number received, and so forth. We may also 3
need to update some of the existing consistency checks, as these new ways of
sending mes -2ges may need to be taken into account in some of them.

These forms of message cancellation should not have difficult interactions
with other parts of the TWOS source code. For instance, they should have no
effect whatsoever on the code dealing with dynamic memory segments. One I
area of code that might require care is process migration. Process migration
will need to be prepared to properly migrate the special cancellation messages,
and it will need to properly migrate and queue negative messages in the U
input queue. Probably, little work will be required to make migration interact
smoothly with message cancellation, but the migration code should be
checked. nq_input_message () and nq_output_message () may also
require changes to properly handle enqueueing of migrating cancellation
messages.

203 3

F2. Event Prediction Design

F211. Introduction

Event prediction is one of the two major new features for TW 2.7. The other
is event cancellation, whose internals were described in memo PLR:366-91-21.
The user interface for event prediction was covered in memo PLR: 366-91-11.
This memo will cover internal design issues of the event prediction feature.
While neither major TW 2.7 feature will be implemented, this memo will
cover the design to serve as documentation, in case of future need.

Event prediction permits users to gain performance advantage of their ability
to guess at future events that are not yet certain. Event prediction has no
semantic effect on a simulation - the simulation will produce the same
committed results regardless of how many or how few times prediction is
used, and regardless of how often the predictions are correct. If most
predictions are correct, the event prediction facility may provide superior
performance. If most predictions are incorrect, the event prediction facility's
overhead may slow down the simulation. Test simulations can be written
that will make event prediction look very good or very bad. With sufficient
work, analytic formulae can be obtained to characterize when event
prediction will win and when it will lose, but such formulae would be of little
practical value, as they would involve terms that cannot be easily obtained
from simple analysis of code, such as the probability that a given prediction is
correct. Only experimentation with actual simulations will determine the
value of this facility.

The prediction facility is based around one user call, predict (). This call is
in many ways similar to the normal schedule () call, except that it requires
two extra parameters, a send time and a sender. schedule () always assumes
that the send time is now, and the sender is the process running, but
prediction will not require those assurr-..tions. In fact, predicting with a
sender and send time of now would be ot no value, as it amounts to a guess
about what the current event will do. Since the current event either will or
will not do that, regardless of the prediction, no benefit can be gained from
such a prediction. Predictions of the currently running event will be treated
as illegal by TWOS. Predictions for the current sender, but a different send
time, are legal. Predictions for the current time, but a different sender, are not
legal, since prediction is only defined for future send times.

The sequential simulator will accept predict () calls, but will treat them as
no-ops, since it cannot take any advantage of them.

204

I

F2.2. Review of the Prediction Mechanism U
The prediction mechanism relies on lazy cancellation to do its magic. When
a user calls predict (), two copies of the requested message are made, as I
usual. However, instead of simply attaching a send time of now and a sender
of the executing process, then shipping one copy and queueing the other,
TWOS will attach the requested send time and sender name. As before, the I
positive copy of the message will be shipped to the receiver. Since that
process never examines the send time of the message, the receiver will not be
able to distinguish this prediction from a normally scheduled event message,
and will treat it identically in all ways.

If the sender is the current process, the negative copy of the message will be
queued, as before, but with a different send time, putting it further along in
the process' output queue. If the sender is not the current process, then the 3
negative copy of the message will be shipped to the predicted sender and
stored in that process' output queue. If the predicted message is in the past of
that process, the predicted sender will roll back and re-execute the event, 3
possibly resulting in cancellation of the message. If the predicted message is
in the future of the process, the predicted message will simply be queued and
will await execution of an event at its predicted send time. Once that event is 3
executed, if the predicted message is indeed sent, lazy cancellation will
prevent resending of the message. Since the receiver already has a positive
copy of the correctly predicted message, and the sender has a negative copy in I
its output queue, all effects of the actual schedule () call have already been
achieved. If the predicted message is not generated by the running of the
event, the negative copy will be sent to the receiver by normal lazy
cancellation mechanisms, erasing all traces of the prediction. Similarly, if no
event is run by the predicted process for the predicted send time, lazy
cancellation will erase the predicted message.

Predictions will not be able to be cancelled by the cancel () primitive. A
predict () call will not return a unique identifier, so cancel () cannot undo U
its effects. unschedule () will not properly undo the effects of a prediction in
the event that the predicted event does not happen. unschedule () will
work properly if the predicted event does happen, but such a case should be
regarded as cancelling the actual generation of the message, not the prediction
of it. Effectively, a user cannot cancel a prediction. If the prediction is wrong,
it will cancel itself.

F2.3. Basic predi' -t () Internals i

predict () will look much like a schedule () call, and its treatment will be
similar. Like schedule (), predict () will set up certain fields and take clock
timings, then use swit ch back () to trap to the executive. The parameter
passed to switch-back () to tell it what kernel routine to call will be set to

2205

U

sv_predict(). sv_predict () will be modelled on sv_tel). However,
event prediction will require the argblock structure of the OCB to be expanded
to include the sender and send time as explicit fields. All routines that
handle user requests to send messages will have to set these fields. Except for
sv_predict (), all of these routines will set the sender field to the name of
the currently executing process and the send time field to the current event
time. s v p r e d i c t () will set the fields to the values specified in the
p r e d i c t () call. It may be necessary to make some modifications to
switchback () to permit it to accept the extra parameters of sender and send
time, so that they can be available to sv_predict ().

sv doit () will also require modifications. svdoit () is the routine that
handles most of the business of sending a message, such as allocating the
buffers for the positive and negative copies of the message and enqueueing or
sending them, as necessary. The event cancellation facility required
sv doit () to have the flexibility to enqueue the positive copy instead of the
negative copy, and prediction requires s v do it () to have the further
flexibility to send both copies (with appropriate message flag values to ensure
proper treatment), rather than enqueueing one of them. sv_doit () must
therefore have access to some form of information telling it what to do with
the various message copies. This information will probably be kept in a field
in the sending OCB's argblock.

The sending of the positive copy is straightforward. It is merely shipped out
to the receiving process and treated in all ways as a normal positive forward
message. The negative copy requires more care. If the predicted event is
eventually to be scheduled by the predicting process, the negative copy can
simply be enqueued in send time order, just like a normally scheduled
message. If the predicted event is to be scheduled by some other process,
however, the negative copy of the message must be sent to that process'
output queue. In order to determine that enqueueing it there is the proper
thing to do, a special value of the message flag must be set. (Normally,
negative messages arriving at an output queue are due to message sendback,
and should annihilate; if they don't, they are sent forward, which isn't the
proper treatment for predicted messages.) Once properly enqueued, no
further special effort is required.

A negative message copy to be enqueued at a third party sender may arrive in
its past. In such a case, we could enqueue it and do a full rollback, with correct
results. However, the effect of such a rollback will be simply to send the
predicted negative message forward, whether or not the predic-.ion was
correct. If it was correct, there is already a copy of the predicted message in the
output queue, so the prediction copy makes two copies. Since the predicted
event sent only one copy during correct execution, lazy cancellation would
send one of the two forward, with the predicted version being the version of
choice for cancellation. If the prediction was incorrect, the re-execution of the

206

event will not generate the predicted message, and its negative copy will be i
sent forward. Since, in either case, the only effect of the rollback would be
sending the predicted message forward, at the cost of extra overhead, TWOS
can instead simply send it forward immediately in the case of its arrival after
the sending process has already performed the associated event. This shortcut
requires a little extra code in nq_outputmessage (), but that code would be
on a rarely used execution path, so it would add little cost to the system.

F2.4. Unique Identifiers, Statistics, Migration, and Other Issues

The predict () call will not return a unique identifier to its caller, but it will
generate one. When the negative copy of a predicted message arrives at the
sender's output queue and is stored there, the predicted copy's unique
identifier will be used by lazy cancellation as the identifier for the actual
version of the message, assuming that the prediction is correct. How lazy
cancellation does this, and why, is described in appendix F1, section F1.3.1.
The mechanism outlined there will work without alteration for predicted
messages, as well. There will be one peculiarity, which is that a message sent
by a given node may not have a unique ID containing that node's number, I
since the predicting process might have been on another node. However, the
unique ID is used only for uniqueness, and its node number field should not
be used either by the application programmer or the system as definite
information, Fo this peculiarity is not a problem. Process migration could
also cause this peculiarity, even in the absence of event prediction. 3
We will need to keep statistics to determine how many times processes
predicted events, how many times the predictions were correct, and how
many times they were wrong. These statistics should be kept on a per-process
basis, like other process statistics. We might also want to keep track of how
many third party predictions were performed, and perhaps separate statistics 3
on the fate of such predictions. cubeio. c and check will have to be changed
to deal with these statistics, cubeio. c: to output them, check to read them,
perform consistency checks on them, and print them out in summary format.

Migration might be slightly impacted by this facility. The only expected
impact is that some special treatment might be required to deal with predicted U
messages in output queues. It's also possible that there will be no impact on
migration.

Users will only be permitted to predict positive messages, at this point, and
may not predict calls to cancel (). As a result, there are no special problems
involving message priority and prediction. The positive predictive messages
will be handled as normal positive messages. Any negative predictive
messages that may need to be shipped to an output queue, because of third
party prediction, could be shipped at lower priority than other negative U
messages (since they will usually not cause rollback), but they will probably be
left at high priority. There are expected to be few such messages in most runs, 3

207 i

and therefore their impact on true high priority messages will be small. The
cost of treating them as a special case at the low level is probably higher than
the benefit.

208

1

Appendix G: GP-1000/Mach Specific Internals U
G1. Time Warp Context Switching 3

By Paul Springer

This document describes how context switching is done between the Time 1
Warp Operating System (TWOS) and the applications that run under TWOS.
The first part of the document is of a general nature and applies to all ports of
TWOS. The second part goes into detail and describes specifically the GP1000
port of TWOS.

G1.1. General Principles 1
In preparation for executing an object, TWOS calls ob j head() . Among other
things, the code in objhead () calls loadstatebuffer () which allocates 1
space for the object's stack, and puts a pointer to that stack in the stk field of
the object's ocb. After calling loadstatebuffer (), objhead () calls
set ctx (), which points the global variable objectdata to the object's state,
and the global variable object_context to the top of the newly allocated
stack space. Then setctx () places the entry point for the object at the top of
the object's stack space. The main loop in t imewa rp . c then makes the
following call:

switchover (object_context, objectdata) I
This invokes the switching code itself, which is written in the assembly
language appropriate for the individual machine on which TWOS is I
running.

G1.2. The Switch Routine I
On the GPlO00 the switch routine is contained in the module BBNswitch. s.
It has two entry points: _swwitch_over, which switches control to the
application, and _switchback, which switches control back to TWOS.

The first thing _switch over () does is to save the registers onto the TWOS I
stack, and then saves the TWOS stack pointer into a global variable. Next it
looks at the top 4 bytes of the object stack. If they are 0, it means that the object
was in the middle of execution, and it needs to resume execution. It resums l
execution by taking the value in the 4 bytes below the top 4 bytes of the object
stack, and 'utting that value into register A7, the stack pointer. This 3
effectively points A7 to the proper position in the object's stack. The registers
are restored from the object stack, and an rts instruction returns control back
to the object. 3

U
209 I

If TWOS regains control because the object has called a TWOS service
routine, TWOS might not immediately return to the object that called it. It
might instead determine that another object has higher priority, and begin
executing the new object. Eventually TWOS would return control to the
object which originally called it.

211

U
U
U
U
I
U
I
U
U

I
U
I
I
U
U
U

212 I

Appendix H: Tester Commands

By Paul Springer & Peter Reiher

This appendix gives a brief description of the purpose and use of each
command available from the TWOS tester debugging and configuration file
reading module. (The internals of the tester are discussed in Chapter 18.)
Some of the following commands are applicable only when used in the
configuration file, and some are applicable only when entered at the Tester
prompt. In general, those commands which display information on the
terminal should only be used when in tester mode.

By default, a tester command is directed to the node number specified in the
tester prompt. (The prompt has the format "#--Tester:", where '#'

designates the node number.) If the command is preceeded by a number, it is
directed to the node which matches that number. The new node then
becomes the default node to which future commands are directed. If instead
of a number, the command is preceeded by an asterisk, the command is
directed to all nodes.

Ordinarily a command is send to the destination node as a Time Warp
command message, with the received time set to the current GVT. If,
however, the command is preceeded by a second number (in addition to the
node number described above), the command message is scheduled for a time
equal to that second number.

If the beginning of the line in a configuration file contains the # character, the
entire line is taken to be a comment and ignored. The C commenting
technique /*...*/ is also recognized.

If a parameter contains special characters such as commas, asterisks,
parentheses, semi-colons or spaces, it may be quoted with the double-quote
character. Tester commands can be written in upper or lower case, or a
combination of both.

Many tester commands accept the name of an object as a parameter. Almost
all of these commands can also accept the name of a phase, instead. A phase
is named by giving both the name of the constituent object and a simulation
time between the begin and end times of the phase. Both the name and time
should be contained within a single set of double quotes. Even if the name
contains special characters, a single set of double quotes is sufficient. The
tester is not able to name phases by virtual time sequence fields, even though
TWOS can split them that way, so, in certain cases, some processes may not be
reachable by name from the tester.

213

1
@ file-name

Open another configuration file and begin reading from it,
and return control to the current configuration file when done. These can
be nested up to 10 deep. 3
QUELOG logsize

Set aside memory to save node utilization information. This
is used in conjunction with dynamic load management. The information
can later be printed by using the DUMPQLOG command.

Toggle the flag which enables dynamic load management.
This flag is initially off. 3
THRESH utilizationdifference

The parameter must be a number between 0 and 100. The 3
default number is 10. It is used as a percentage in the program. If dynamic
load management is enabled, migration will occur only if the difference in
utilization between the busiest and least busy nodes exceeds this value. 3
MIGRATIONS limit

Limit the number of migrations per DLM cycle. The default 3
value is 1. The maximum allowable is the lesser of 128 or half the number
of nodes used.

SPLITSTRAT strategy-type
This command determines which strategy will be used to

split objects for migration. strategy-type may assume an integer value I
between 1 and 4 inclusive. 1 forces use of the NEARFUTURE strategy, 2
the MINIMALSPLIT strategy, 3 the NOSPLIT strategy, and 4 the
LIMITEMSGS strategy. The default is NEARFUTURE.

CHOOSESTRAT strategy-type 3
Determine which strategy will be used in selecting an object

for migration. Here strategy-type may be either 1 or 2. 1 forces the use of
the BESTFIT strategy, 2 the NEXTBESTFIT strategy. The default is
BEST-FIT.

MAXOFF limit 3
Limit the maximum simultaneous migrations per node to

this value, a non-negative integer. The default value is 1.

IDLEDLM cycles
Set the number of initial DLM cycles during which no object

migration is done. By default this number is 3.

214

DLMINT interval
Set the interval (in seconds) between DLM cycles. The value

of interval must be a positive integer. The default value is 4.

DJDUMPQLOG
J Display the current contents of the node utilization table.

n cPULOG

Open a file for output, and name it "cpulog". Time WarpU outputs a message into this file everytime an object message is processed
and control is passed to an object. The message consists of a "B" (for event
messages) followed by the name of the object. Another message is written
to the cpulog file when the object exits back to Time Warp. This message
gives the name of the object and the amount of time it used.

3 SPLIT name simrtime
Split an object phase into two new phases, with the boundary

between them defined by simretime. The object's name is specified by the
name parameter.

MOVE name simretime node
Move an object's phase to the node specified by node. The

phase is specified by the name of the object in the name parameter and3 simretime, any point of time spanned by the phase.

SENDSTATEQ
Print a list of information on states that are scheduled

migrate but have not yet done so. The information includes such things
as what the destination node is, and when it is to be delivered.

ISE4DO Q
Print information about the ocb of each phase scheduled to3 migrate.

SUBCUBE node number config..file
SSpin off a subset of processors which will run the same

simulation code using the set of parameters found in config..file. The
number of processors in the subset is determined by the number
parameter, and the node parameter determines which node will act as the
CP. Both number and node are integers.

3 GVTSYNC time
Sync all nodes at the simulation time given by parameter

time, and start the elapsed time calculations at that point. Do not collect
any flow log statistics before time. The time parameter currently must be
an integer, but that should be changed to allow floating point values.

2215

£

U
U

GVTINIT
Start the gvt interrupt process. By default this is done after

Time Warp finishes reading the configuration file.

WINDOW time
Prevent any object from running more than time past the

current GVT. Here the time parameter is a floating point value.

DELFILE localname I
Release all memory used to store the contents of file

local_name, and take it out of the Time Warp list of files.

HELP
Display a brief summary of the commands. 3

ACKS
On the Butterfly, print the number of output messages

waiting in the queue to be sent.

QUEUES - -I
Display information about each message in the low level

input and output queues.

NOW
Display the simulation time for the currently executingobject.1

MYNAME
Display the name of the currently executing object. I

NUMMSGS 3
Display the number of messages to be processed by the

current event.

1MSG message~number

Display the contents of a message to be processed by the
current event. Which message to select is indicated by messagenumber,
with 0 indicating the first message.

OBJEND Terminate the current event of the manual object. A I
manual object is an instantiation of an object of type manual. It is
invoked just like any other object, by sending a message to it. Once 3
invoked, the object prompts for tester commands to execute (via the
MAINUALEVENT prompt) until the OBJEND command is entered.

216

MEMANAL
Display information about memory that's been allocated, and

memory left in the pool.

LVT
Display the virtual time for a node, for PVT,

LOCALMIN -VT and MINVT. PVT refers to the minimum simulation
time of all the objects on the node. PVT is calculated not when the
command is issued, but at the last GVT click. LOCALMINVT is the
value calculated to be the node's minimum virtual time during the last
GVT cycle. Following a GVT cycle, MEN.VT is set to the new GVT value.

GVT
Display the current GVT value.

CLR
Clear the screen by outputting a "Wf.

GO
Leave tester and resume execution.

TIMEON
Ii Start the interrupt process that triggers periodic GVT
Scalculations.

TIMEOFF
-O Stop the interrupt process that triggers periodic GVT
calculations.

ISHOWSCHEDQ
Display a list of all the ocb's on the node.

SHOWDEADQ
Inot used). Display a list of all the ocb's in the dead ocb queue (currently

DUMPMSG msg.id
Display header information and contents of the message

specified by msg.id. You can get the msg.id by looking at the output of
the IQ or OQ commands.

DUMPSTATE state-id
Display the state specified by state-id.

I
217

I

STADDRT state-id 3
Display the sizes for each address table of the state specified by

state-id. 3
DOCB object-name

Display the ocb for the object whose name is object-name. 3
IQ object-name

Display the input message queue for the object named
object~name.

OQ objectname 3
Display the output message queue for the object named

object-name.

SQ object-name U
Display a single line of information about each state in the

state queue for the object named object.name. 3
MIQ object_name

Display the migrating input message queue for the object 3
named object-name.

MOQ object-name 3
Display the migrating output message queue for the object

named object-name. 3
MSQ objectname

Display the migrating state queue for the object named
obj ect..name.3

MOCB objectname 3
Display the migrating ocb for the object named object-name.

PDOCB object.name time
Display the ocb for the phase of object-name which includes

time.

PIQ objecLname time U
Display the input message queue for the phase of

object-name which includes time. 3
POQ object-name time

Display the output message queue for the phase of 3
object-name which includes time.

U
218

PSQ object-name time
Display the state queue for the phase of object-name which

includes time.

TMEM
This command results in output which shows the total3m amount memory used in the input, output, and state queues of each ocb.

It also displays the number of memory segments and total memory in the
free pool (used for allocating object stacks) and the number of memory
segments and total memory in the message pool (used for allocating
message buffers).

NOGVTOUT
This command will set a flag in Time Warp which will3 prevent the regular GVT output lines from appearing during the run.

MAXACKS number
Set the maximum number of outstanding messages. This

limits the number of mesrages sent by a node but not yet received by the
destination node.

I AGGRESSIVE
Change the message cancellation mechanism from lazy (the3 default) to aggressive.

BPO object._name3'Set a breakpoint for the object named objectname. The next
time this object is about to execute, testerO will be called. Using this
command clears any breakpoint set via the BPT command. Only one3 breakpoint at a time may be active. Currently the test for breakpoints (in
timewarp.c) is #if'd out, and so this must be modified and the module
recompiled in order to have the breakpoint feature available.

BPT time
Break as soon as an object whose svt is at or later than time

begins execution. Once the break is encountered, testero will be called.
Using this command clears any breakpoint set via the B PO command.
Only one breakpoint at a time may be active. Currently the test for
breakpoints (in timewarp.c) is #if'd out, so the module must be
recompiled in order to have the breakpoint feature available.

I CBP
Clear any breakpoint that has been set.

3BP
Display information about the currently set breakpoint.I

219U

B
U

WPO object-name
Set a watchpoint for the object named objectname. Every

time this object is about to execute, TWOS will print a message giving the 3
name of the object and the object's simulation time. Using this command
clears any watchpoint set via the WPT command. Only one watchpoint at
a time may be active. Currently the test for watchpoints (in timewarp.c) is U
#if'd out, and so this must be modified and the module recompiled in
order to have the watchpoint feature available,

WPT time
Print a message whenever an object whose svt is at or later

than time begins execution. The message contains the name of the object U
and the object's simulation time. Using this command clears any
watchpoint set via the WPO command. Only one watchpoint at a tir. i
may be active. Currently the test for watchpoints (in timewarp.c) is # i
out, so the module must be recompiled in order to have the breakpoint
feature available. 3
CWP

Clear any watchpoint that has been set. 3
WP

Show any watchpoint that has been set. 3
MEMSIZE memsize

Set the amount of free memory TWOS has available on each 3
node. Note that a command line parameter also sets the amount of free
memory. (See the TWOS User's Manual, Section 2.3.2.) The command
line parameter sets an upper limit that will be used unless this tester U
command is issued. This command cannot allocate more memory than
was set aside by the command line parameter, or, if that parameter was not
used, by the default in the system. The primary purpose of this command
is to ease testing of TWOS' behavior in limited memory.

NOSENDBACK 3
Disable message sendback. (See Chapter 10 for a description

of message sendback.) 3
PENALTY size

Assess a penalty for a process each time it performs some
undesirable action. This command allows the size of the penalty to be set.
See Chapter 15 for further details.

3
220

REWARD size
Give a process a reward each time it could not be scheduled

due to accumulated penalties. This command allows the size of the
reward to be set. See Chapter 15 for further details.

HOMELIST
Show the home list entries for all processes whose home

node is the local node. See Chapter 17 for more details of process 1ocation.

PENDING
Show all entries in the local pending list. See Chapter 17 for

more details of the pending list.

CACHE
Show the contents of the local process location cache. See

Chapter 17 for more details of the cache.

CENTRY object-name
Dump any cache entries for the named object from the local

cache. Note that, because of temporal decomposition (see Chapter 12),
there may be more than one entry. See Chapter 17 for more details of the
cache.

HENTRY objectname
Dump any home list entries for the named object from the

local home list. Note that, because of temporal decomposition (see
Chapter 12), there may be more than one entry. See Chapter 17 for more
details of the home list.

HOME object_name
Show the home node for the named object. See Chapter 17

for more details of the home list.

STOP
End the TWOS run immediately. Do not write out any of

the files written at the normal termination of a TWOS run.

QUIT
Identical to STOP.

FLOWLOG size
Create a flow log for use by the fplot tool. Set aside size

entries on each node. If this area is filled, any further entries will be
dropped, but the area limits the memory available for normal TWOS
operations, and may siow down the simulation, or even prevent its
completion. See the TWOS User's Manual, Section 7.3, for further details.

221

B

MSGLOG size 3
Create a message log for use by the mplot tool. Set aside size

entries on each node. If this area is filled, any further entries will be
dropped, but the area limits the memory available for normal TWOS
operations, and may slow down the simulation, or even prevent its
completion. 3
DUMPLOG

Dump the flow log immediately, instead of waiting for the
end of the run.

DUMPMLOG 3
Dump the message log immediately, instead of waiting for

the end of the run.

PROPDELAY multiplier
Increase the length of every event by multiplier times. This

command can be used to artificially change the granularity of events for
existing simulations without changing their code. The additional time isused in busy looping.

ISL.OG size delta
Maintain an instantaneous speedup log. Set aside size

entries, and check for data every delta seconds. See the TWOS User's 3
Manual, Section 7.4, for further details.

ISDUMPLOG I
Dump the instantaneous speedup log immediately, instead

of waiting for the end of the simulation. 3
HOGLOG time

Maintain a record of the event on each node that took the
longest uninterrupted time to execute a segment of user code. Only 3
consider events until GVT reaches time.
CRITP'ATH

Calculate the critical path of the simulation. See Chapter 16for further details.

TSQ object-name
Show the truncated state queue for the named object. This 1

queue is always empty unless the critical path is being computed. SeeChapter 16 for further details. 3
= I
222

m uuw mm u o lnlml mnunm m nuum nIN ~ aaman ~ lnl n n nl I n

SENDBUFFS
(GP1000 only.) Show the contents of the low level send

buffers on this node.

223

U
U
U
I
U
I

II

I!
I

II

II

I!

In

Appendix I: Transputer Implementation Details

3 The following attached document is a description of an earlier attempt to port
TWOS to a transputer platform. This information may prove of some use to
others attempting a similar port. Because this document only exists in hard
copy form, there are no page numbers for it. Page numbering resumes at the
end of this appendix.

U
I
I
3
I
I
3
3
I
I
U
3
3
I

•225I

B
U

TIME WARP ON THE TRANSPUTER

-A PRELIMINARY INV E S TIGATIO N. B

Leo R. Blume

I

Section 363 U
Jet Propulsion Laboratory 3

October 14, 1988 3

U
U
U
I
3
I
U
U

7=4- - I- -U

L. Il mne

This document presents the fincings of the Time Warp Project's preliminary
investigation into parallel processors based on the Inmos Transputer.

The background section below details the setting leading up to actual Trans-
puter implementation of Time Warp. This is followed by brief descriptions of tre
Transputer hardware and software environment. The next section describes :he
applications on which tests were run and gives the results of the performance
measurements. A conclusions section summarizes the current state of
development and the recommendations section indicates how to proceed from
here.

Background

The goals of the Time Warp development effort are to

"* Increase the functionality of Time Warp through the addition of new features
"* Study Time Warp's dynamics by conducting performance studies
"* Evaluate parallel processors for suitability as platforms for Time Warp, and
"* Ensure that Time Warp remains portable.

The port of Time Warp to the Transputer addresses the second, third, and fourth
goals. Porting to the Transputer allows us to investigate both the performance
of the Transputer and the performance of Time Warp on machines with Trans-
puter-like architectures. The Transputer effort also promotes portability by
requiring that Time warp ba modularized such that machine-dependent compo-
nents are appropriately isolated.

Investication Strategy

The original strategy was to conduct a short-term study of the Transputer. Test
programs were to be written and, if time allowed, some effort would be made to
port all or part of Time Warp. The product of this investigation was to be a report
that would return a recommendation as to the feasibility and merit of porting
Time Warp to the Transputer. Given the cautiousness of this approach, it was
decided that rather than buy hardware which might scarcely be used, hardware
and software should be acquired on a trial evaluation basis.

A number of companies build Transputer boards for the IBM and Apple
Macintosh series of personal computers. In the end, it was Definicon, a local
manufacturer of Transputer boards for the IBM PC, who agreed to loan the
Time Warp group a four-node board for a one-month evaluation. It is to the
considerable credit of Definicon that they have been willing to renegotiate the
loan agreement several times when technical difficulties and a more ambitious
set of goals required that the Transputer work continue beyond the original
planned completion date.

L. 9 ,. ,"e -

Parasoft, a local com oany speczaizing in parailel processing software. agreec
to provide a copy of their Cubix system software for use on tre Transputer
toard. Time Waro had previously been successfully run with the Cuoix soft-
ware on the JPL Mark Ill Hypercube. Thus, using Cubix promised to provice te
quickest route to a successful Time Warp port.

In actuality, the Cubix software for the Transputer was not completely ready in
time for the Time Warp port. Thus, as will be discussed later, we developed our
own software to perform message routing and host interface services.

II

II
UI
Ui
UI
UI
3I
U
UI
3I
U!
U

L. 8tumre 3

The Development Environment

Parallel Processor Hardware

The Transputer is a general-purpose CPU with built-in hardware support for
concurrency. Parallel processors based on the Transputer are generally lower
in cost and smaller in size than more traditional parallel processing
components.

There are two types of Transputers used in board-level products for personal
computers: the T800 and the T414. Both are machines with full 32 bit data and
address paths. The primary difference between the two devices is that the 7800has on-chip floating point hardware. In addition the T800 has twice the fast, on-chip RAM of the T414.

The Transputer-based parallel processor that was the object of this investiga-
tion was the Definicon T4 board. The T4 is a single, standard-sized card for the
IBM PC. The board contains four Inmos T414 Transputers with one megabyte
of RAM each.

3Host Hardware

The Transputer board was installed in an IBM PC AT having 512K of memory
and 40 MB of disk storage. The PC provides power to the Transputer board and
acts as both an I/O console and a file server for programs running on the Trans-puter.

3 The other element of the host environment was a Sun 3/50 on which cross-
compiles for the Transputer were performed. The Sun and the PC wereg connected to one another by a serial line.

Software

U Definicon has developed a C compiler that supports Transputer-specific exten-
sions to the C language. This compiler was provided with the evaluation
hardware. Another company, Logical Systems, also makes a C compiler for
the Transputer. The Logical Systems C compiler has been in service longer
than the Definicon compiler and runs on several different platforms including
the Levco board for the Macintosh II. Thus, in order to promote portability
across different Transputer products, we elected to purchase the more widely-
accepted Logical Systems compiler (it could not be obtained on a trial basis).I

U
U
I

Porting Time Warp

The port of Time Warp to the Transputer proved to be among the most difficult of I
all the machines recently evaluated. This difficulty arose because of several
factors that will be listed and then elaborated below. I
1. Lack of debuggers
2. Limited host 1/0 capabilities
3. Long compile-download-test cycle U
4. Bugs in the Transputer hardware and software.

The Transputer hardware lacks any kind of interrupt facility. This absence U
makes the development of debuggers very difficult. As a result, we had no
source-level debugger for the Trarsouter and, as far as we know, true assemblylanguage debuggers do not exist. Consequently, a large part of the evaluation Iperiod was spent writing debugging utilities.

The host IO capabilities that are provided as part of the Logical Systems C run- 3
time system were useful but not sufficient for Time Warp's needs. Specifically,
we needed the ability to interrupt the Transputer array from tie host, and we
needed the ability to dt, I/O from any processor (not just the processor that is 3
directly connected to the PC host interface).

The Cubix environment, had it been fully functional in June. would have 3
provided most of these capabilities. As it was, implementing this functionality
ourselves was quite time consuming.

The third problem was a long compile-download-test cycle. Time Warp was
compiled on a Sun workstation, downloaded over a 9600 baud serial line to the
IBM PC AT and then loaded onto the Transputer board. Much of this arcane
arrangement could have been avoided were it feasible to compile Time Warp
on the Transputer's PC host. Unfortunately, the limilic -:s:essing capacity of
the IBM AT would have led to even longer compilations ;nereby worsening the
situation.3

Compiling and linking on the Sun typically tcco one to two minutes. An average
transfer to the PC took four minutes. Communication between the PC host andthe Transputer is performed a byte at a time through I/O ports. Consequently,
the download time from the host to the Transputer board is rather slow - taking 3
well over a minute.

The fourth factor hampering the porting effort was the appearance of tw' major
bugs. One was an undocumented "feature" of the Transputer hardware itself,and the other was a bug in the linker software. The hardware bug prevented
Time Warp from running successfully on even a single node. The linker bug, by
contrast, caused intermittent failures in all node configurations. These bugs

ii3
I -- . m3

L. lur ,e 5

were so serious and subtle that an entire month was probably lost tracking them
down and developing appropriate curatives.

The result of safely negotiating all the hazards of Transputer development was
tme creation of several new Time Warp modules - namely:

kernel.c
tpq.c
debug.c
switcher.s

The kernel module provides message system, host interface and timer services
to Time Warp. The tpq module contains a set of queueing functions used by the
kernel's message system. As the name implies, the debug module contains
debugging routines including a rudimentary assembly level debugger. The
switcher module contains the assembly language functions that implement
Time Warp's context switching mechanism.

Writing our own kernel was a time-consuming process, but it may yield certain
benefits. For one, it may permit certain Time Warp optimizations that are not
possible when the message system is embedded in code to which the TimeI iWarp developers do not have access.

The Appendix contains a list of the kernel calls used by Time Warp and a bref
description of their functionality. A more detailed description of these modules
will be provided in an upcoming memo.

U
I
U
I
I
U
I
I
I

L. Biume -'I

I
Performance Studies

The major activity of the Transputer effort was just getting Time Warp to work. m
Consequently, there was relatively little time left for conducting performance
studies. The performance studies that were performed addressed several
issues • I

"* Time Warp performance on the Transputer
"* The Transputer's raw performance as a computational engine 3
"* The performance of the underlying messaging system

Time Warp Performance 3
To test Time Warp's performance on the Transputer, Time Warp must be run
with as realistic a simulation as possible. Due to memory limitations, the most i
sophisticated model that was runnable was the Queueing Model.

The Queueing Model implements servers as objects and clients as messages 3
that are routed in between the servers. The queueing model was tested with
the following parameters and found to exhibit speed up.

Number of servers: 12
Number of clients: 30
Busy Loop Count: 10,000 3
The busy loop count is a parameter that specifies the number of additions that
are performed each time that a server object executes its event section. Each
execution of the loop results in one floating point and one integer addition. The 3
purpose of this loop is to adjust the ratio of computation .to communication - a
ratio that has a strong bearing on the potential speedup of a Time Warp appli-
cation. 3
The test results were: 3
Number of Nodes Execution Time
1 132.0 3

1° 111.1

2 75.6
3 44.6
4 44.2

The "-ed one node timing indicates a configuration in which the node used for 3
running objects was other than the host node. The host node is more heavily
loaded with system activities than the other nodes since it manages timer oper-
ations and host I/O.

3

I I II i

L. Bumre'

Observe that these are relative speedup timings. Absolute speedup measure-
ments are not possible because the Time Warp Simulator has not yet been

i ported to tme Transputer.

The speedup curve flattens out going from three to four nodes. Apparently the
slight gain in work distribution that results from distributing the 12 objects across
four nodes rather than three is consumed by the increase in communication
costs.

Note also that the loop constant of 10,000 needed to get this speedup isrelatively large. This may indicate that there are inefficiencies in either theTransputer's messaging mechanism or in the kernel software.

I Transguter vs. Sun Timings

In order to estimate the raw computational power of the Transputer, the Time

Warp Queueing Model running on one Transputer node was compared with the
same benchmark run on a Sun 3/50 workstation. The Sun 3/50 contains a
Motorola 68020 rated at 1.5 MIPS. It also contains a Motorola 68881 floating
point unit. Timings on the Sun will be biased, of course, by the burden of Unix
operating system overhead.

The first test compared the integer performance of the two machines.
For this test, the floating point addition in the Queueing Model's delay loop was
removed, leaving only the integer addition that increments the loop counter.

The loop count was increased from 10.000 to 40,000 as an ad hoc means of
compensating for the decrease in computation resulting from the removal of the
floating point addition. The results were:

Time on Sun: 13.12 seconds
Time on Transputer: 11.42 seconds

Thus in terms of mostly integer operations, the Transputer out-performed the
Sun by about 15%.

The next test compared the floating point performance of the two machines. Forthis test, the floating point operation was restored in the model's delay loop, and
the loop count was reset to 10,000. The results were:

J Time on Sun: 13.1 seconds
Time on Transputer: 132.0 seconds

3 In other words, the Transputer was 10 times slower than the Sun - even
though the Sun had the additional handicap of running Unix.I

I
I

L. Blume I

It turns out that a large part of this performance differential is caused by :,-e
absence of floating point hardware on the T41 4 Transputer. Thus, the third test
compared floating point performance without the benefit of floating point hard-
ware. As with the second test, the busy loop was coded to contain 10,000 3
floating point additions. This time, however, the version of Time Warp running
on the Sun was compiled in such a way as to cause all floating point operations
to be done in software. The results were: 3
Time on Sun: 50.1 seconds
Time on Transputer: 132.0 seconds 3
This result suggests that the floating point software is more efficient on the Sun
than on the Transputer. 3
Transguter Communication Performance

The test results discussed thus far make no comment on the relative efficiency
of Transputer communications as compared to communications on other
processors. To estimate communication performance, a series of tests were run
with the Ping-Pong model. This model does nothing but send messages back
and forth between a Ping object and a Pong object and is thus uniquely suited
to measuring message latency. 3
Using a model in which 10,000 me'x;ages are sent between the Ping and the
Pong objects, the following timings were recorded: 3
Object Location (node)
Ping Pona Total Execution Time (secs) 3

0 0 121.9
0 1 234.4
0 3 377.1 3

As expected, the best time is achieved when both objects are on the same
node. This will be the case for virtually any machine since message communi-
cation is faster on-node than off-node.

When the Pong object is moved to Node 1, which is adjacent to Node 0 in the
topology used for this experiment, the total execution time increases by a factor I
of about two. This is not surprising and is roughly in line with the factor of
degradation experienced by other machines when off-node communication is 3
involved.

In the third test, the Pong object is moved to Node 3. Node 3 is not adjacent to
Node 0 and thus some intermediate node must do message routing. The
substantial increase in execution time reflects the expected penalty of the store
and forward messaging that is used on the Transputer. 3

3
I

L. 8i•.e

To accurately interpret these results, a few observations adcut application-
dependent effects are in order. In real applications running on multiile nodes.
there is more than one kind of concurrency. There is concurrency of computa-
tion (this concurrency is the basis for the ability to achieve speedup) and there
is also concurrency of communication with computation. The natural overlap of
communication and computation obviously doesn't happen in the Ping-Pong
model and accounts, in part, for the fact that performance steadily decreases as
a function of the distance between objects.

Additionally, during realis,,,- multihop message communication, pipelining
effects are observed that tend to increase the effective communication rate over
that which the above tests would indicate. This pipelining effect occurs because
more than one message may be inserted into the logical "pipeline" between two
nodes before the first message reaches its destination. This effect is not presbnt
in the Ping-Pong model.

Thus, to determine how well Transputer communications will scale for programs
whose communication patterns are irregular and widely distributed across the
network of processors, tests must be conducted on larger arrays of Transputers
with more realistic applications.

U
U

3

I

U
I
U
U
U
3
U

Conclusions

Despite the difficulties, we have greatly exceeded our original goals. I
The goal was to write test software and produce a report. Instead, we success-
fully ported a multinode Time Warp to the Transputer. U
Additionally, in creating our own message passing kernel, we have created the
only version of Time Warp that does not run on top of anotner operating system. I
This "vertical integration" allows us to perform Time Warp specific optimizations
that are not possible in other environments. For example it is possible to
eliminate message acknowledgements in the Transputer versicn of Time Warp
since Time Warp can access the message system's queues to perform GVT
calculations. It will be interesting to note the effects of such changes on overallTime Warp performance. 3
- The worst is behind us.

To conduct a t exploration of Time Warp on the Transputer, a number of I
significant activities need to be accomplished. These activities are listed below.

Maior milestones 3
1. Create host interrupt capability
2. Build operational Time Warp context switcher U
3. Build operational message passing kernel
4. Run Time Warp successfully on one node
5. Run Time Warp successfully on multiple nodes
6. Conduct preliminary performance studies
7. Port a substantial Time Warp benchmark
8. Port Time Warp Simulator
9. Complete performance study on a large (> 32) number of nodes

Milestones 1 through 6 have already been completed. Milestone 8 is the payoff 3
point, and we are about 70% of the way there. Given that we are so close to
getting the "payoff" of meaningful large-scale performance results, this effort
must not be abandoned without strongly compelling reasons. 5
- There have already been benefits.

Time Warp is much more portable thanks to undergoing the rigors of the Trans- Iputer port. Portability is always an advantage.

Furthermore, the message passing kernel may itself have intrinsic value beyond I
the scope of the Transputer implementation. It may be used in part or in whole
on other machines for which sufficient communications facilities are lacking. In
short - it provides additional options for greater portability.

3
U

L. Blume r

- The cost of moving forward is modest

Cost has two components: a dollar component and a manpower component. In
terms of dollars, the cost of four fully configured Transputer nodes is only about
$14,000. This is about the cost of a "loaded" Macintosh II. Compared to otner
machines, this is quite a low price for a four-node parallel processor. Further-
more, "buying in" to the Transputer at this level will allow us access to much
larger Transputer configurations at Definicon (in much the same way that our
buttertly purchase has opened the door to very large machines at BBN).

The manpower cost is also reasonable. The exact requirements needed to
accomplish milestones 7 through 9 are discussed in the recommendations
sections.

* The potential benefits to the project itself are great

Running a significant Time Warp benchmark on a large array of Transputers will
certainly advance our understanding of both Time Warp and the Transputer (or
future machines architecturally similar to the Transputer). The project may also
gain the ability to outfit desktop personal computers with low-cost parallel
prccessors if the results of the Transputer evaluation are favorable.

* This work is of major interest to others

It is worth pointing out that far from being of merely parochial interest, this effort
will generate publication quality results that others will find valuable. Specifi-
cally, interested parties include:

"• The parallel processing community
"• The simulation community
"* The sponsors of the Time Warp project.

The parallel processing community is interested because this effort constitutes
perhaps the most significant validation activity yet of the Inmos Transputer - a
machine that, despite its several faults, is the first microprocessor designed
specifically for parallel processing. The success or failure of a major non-
numerical application such as Time Warp would make a very telling statement
about the general usability of machines with the Transputer architecture.
Indeed the results, if strongly negative or positive, may even influence the
design of future parallel processor hardware.

This effort is of interest to the simulation community because it holds the
promise of delivering a solution to a long-standing problem - the lack of
credible desktop simulation platforms.

The Transputer work is also of interest to the sponsors of the Time Warp project.
Ultimately, our sponsors hope to use a future version of Time Warp. Just as

L. 8!ume . 2 I

Time Warp is evolvinr into a more usable piece of software through the ac,:o I4
of new features and the elimination of bugs, the hardware on wrich Time Waro
runs should be evolving towards greater usability.

Usability is a function of many variables. However, the history of the personal
computer has demonstrated quite dramatically that major components of
usability are accessibility and locality. A machine may be physically local, Out
not electronically accessible. Similarly, a machine may be electronically
accessible but not physically local.

A machine that sits on a person's desk and is not shared with other users offers
the ultimate in accessibility and locality. If its other shortcomings can be
overcome, the Transputer may qe the key to creating the long-awaited desktop
simulation workstation.

- The time to act it now. 3
It has been suggested that in light of the limited personnel resources, the best
policy might be to checkpoint the work done thus far - hoping to come back to
it next year or as additional funding becomes available.

The problem is that this suggestion ignores the fundamental dynamics of our
software-development environment. Every two months of delay between the 3
end of the current experiment and its ultimate continuation will result in a
measurable increase in the difficulty of resuming the work. The increase in
difficulty will be the result of many factors. Currently, the version of Time Warp S
that is running on the Transputer is the official released version. As soon as two
or more versions of Time Warp have been released without a port to the Trans-
puter, the difficulty of the port becomes markedly non-trivial. 3
Worse yet, delays in the implementation of more than three or four months
would begin to erode the hard-won expertise that the group has developed in
working with the Transputer. Delays on the order of a year would impose the
added threat of personnel changes and changes in the underlying hardware
and software. The result would be a 0% carry-over of the technology that hasbeen built here during the last four months. Thus, a decision to deferindefinitely Is a decision to abandon this effort. 3

I
I

| | I I |11I

L. Blurne '3

Recommendations

Despite the fact that Time Warp now runs on up to four Transputers, there
remains a substantial amount of interesting, undone work. The limited memory
in the evaluation equipment prevented us from implementing a large Trime Warp
benchmark. Additionally, because we never had access to more than four
nodes, we were never able to test Time Warp on a large array of Transputers.

To answer the question of whether or not the Transputer would be a suitable

platform (in either large or small configurations), Time Warp must be tested with
a real application. To determine the Transputer's effectiveness in a large

I numbers-of-nodes configuration, tests must be run on just such configurations.

Recommended activities with estimated times of completion are given be!ow:

S• Procure four-node Transputer 3 days over 2 weeks
* Install Transputer hardware 1 day over I week

Port latest version of Time Warp 5 days over 4 weeks
- Port TW Simulator 5 days over 4 weeks
* Port STB88 8 days over 6 weeks
* Conduct Performance Tests 15 days over 3 weeks
* Document results 10 days over 10 weeks

Total: 47 days over 30 weeks

R Start date: November 1, 1988
End date: June 1, 1989

The key factor in the schedule planning is reducing the impact to other Time
Warp activities. The stretched-out schedule of activities reflects this priority.

I Performance tests would be conducted at Definicon on a large array of
Transputers that they have agreed to assemble for the sake of this expenment.
Clearly the whole effort is contingent upon the availability of this resource and
so the agreement must be firmed up before any other steps are taken.

The above course of action also depends on the commitment and support of cur
sponsor both in terms of funding and relaxation of other scheduled activities, if
such should be needed.

3 Recommended Hardware and Software

The recommended hardw3re for a continued Transputer effort depends in part
on the seriousness of the effort. Configuration 1, below, is the minimal set of
hardware needed to continue at a baseline level. Configuration 2 adds to tire
components in Configuration 1 those items that would be needed for a more
aggressive implementation strategy.

I
I

Hardware Corf~cu~avnI I 3
Itern Quantity Estimated Cost
"* Definicon 4 node T800 board 1 $ 14,000

w. 4 MBytes of memory / node.
"* Ethernet Card for the AT 1 $ 750

A four-node system is with four megabytes of memory per node is the minimum
configuration on which a major Time Warp benchmark will run. We will spec:fy
that Definicon hardware be purchased to eliminate the risk of hardware incom- I
patibolties.

The T800 processor is needed because the floating point libraries currently 3
available for the T414 processor do not support trigonometric functions. Most
Time Warp applications use these functions for geometry calculations.

The Ethernet card is needed to facilitate fast file transfers between the Sun, on
which compiles and links are performed, and the PC AT serving as a host for
the Transputer. 3
Hardware Configuration 2

Item Q Ouantfly Estimated Cost

* All items in Configuration 1 1 $ 14,750
* 80386-20 PC Clone 1 $ 2,000 p
The use of a '386 machine would allow compilations to be performed on the
host machine rather than having to be done on Sun workstations. This would i
greatly reduce the compile-download-test cycle that has hampered
development to date.

Note that the Ethernet card is still necessary in Configuration 2. Though com-
piles would be performed on the '386 host, Ethernet access will be needed to
support source code downloads as Time Warp and its applications continue to 3
evolve.

Recommended software consists of: S
TOPS network software for the PC. 3
TOPS software is now being successfully used by the Time Warp project to
allow the Sin workstations to act as file servers for Macintoshes. Extending this
capability to the PC is probably the best way to achieve transparent Sun file
access. 3

3
I

L. Surre 5

Another cancid~ate'for acquisition is Parasoft's Cuoix system software. Tc•Cgrnno longer strictly needed for its message passing capaodlity, Parasort ;rcicatesthat the latest version of their software contains ceougging tools that m:gt
prove useful.

I I I

APPENDIX I

Transputer Kernel Call Summary 5
kernel-main (argc, argv)

int argc;
char * argv[;

The very first thing that the Transputer implementation of Time Warp does is call
kernel-main. Kernel-main initializes the kernel's input, output, and free
Queues; it reads in a file called NODES on the host that describes how the 3
Transputer nodes are interconnected and broadcasts this information to all
other nodes; and it creates processes that handle input, output, and host I/O.
Finally, it inspects the Transputer RAM for illegal instruction sequences. S
xsend (buff, len, dest, type)

char *buff;
int len;
int dest;
int type;

Xsend is the function used for general message output. The message supplied I
to xsend is enqueued at the end of an output queue for transmission at some
later time. Xsend copies the input message into a buffer it allocates from the
kernel's free list. Thus, the calling routine may dispose of or reuse the buffer asI
soon as xsend returns.

xrecv (buff, Ion, src, type, rtn_src, rtntype) 3
char buff;
int len;
int src;
int type;
int * rtnsrc;
int rtntype;

The receive function that provides the analog to xsend is xrecv. The caller to 3
xrecv requests the next message from node 'src" of type "type" at the head of
the node's input queue. The src field may contain the symbolic constant
ANY_SRC. Similarly the type field may contain ANYTYPE. If both wild-card .
constants are used, xrecv will just return the first message in the input queue.
Time Warp typically acquires messages from xrecv using ANYSRC and 3

i

L. Blume .

5 ANYTYPE. The actual source and type of the message returned by xrecv is
passed back through the pointer arguments rtn src and rtn type.

signal (signum, ufunc)

int signum;
int (* ufunc)0;

Signal takes a signal number from the set of numbers defined in the fileU tpsignal.h and associates with it the user function ufunc. When the kernel
detects the event indicated by the signal number, it calls ufunc. The signal
interface is identical to Unix, but only one signal is currently implemented -
SIGALRM, for alarm signal notification.

alarm (Interval)

int interval;

I The alarm function works in conjunction with the SIGALRM signal. Alarm takes
as an argument an interval length in seconds. After interval number of secondshave elapsed, the kernel will call the function associated with the SIGALRMSsignal, provided that such a function exists.

get_nodenum 0;

This function returns the processor node number.

5 getnum_nodes 0;

This function returns the total number of nodes in use during the current execu-3tion of Time Warp.

kprintf (format, argl, arg2, ... , arg15);

char * format;
int * argl, arg2,... arg15;

kprintf provides a node-independent pnntf capability. When executed on noce
0, kpnntf prnts directly to the host interface. When invoked on some other noce,
kprintf sends a message to node 0 containing the text to be output. The outputis pe,"ormed when the message reaches node 0.

5 brdcstjinterrupt ()

brdcstinterrupt causes a high-pnority message of type INTERRUPT TYPE to
be sent to all nodes. Time Warp's tester() function calls brdcst_interr-upt to

I
I

L. 81ur',e •,U-

iinform other nodes-of the need to immediately enter the command ana cata 3
exchange protocol used by Time Warp's tester() command interpreter. I

I
U
U
I
U
I
U
U
I
U
I
3
I
U
I
I

[Ebling 89] Maria Ebling, Michael DiLoreto, Matthew Presley, Fred-
erick Wieland, and David Jefferson, "An ant foraging
model implemented on the Time Warp Operating
System", Proceedings of the 1989 SCS Conference on Dis-
tributed Simulation, Simulation Series Vol. 21, No. 2,
Society for Computer Simulation, San Diego, 1989.

(Fujimoto 88] Richard M. Fujimoto, "Performance measurements of dis-
tributed simulation strategies", Proceedings of the 1988
SCS Conference on Distributed Simulation, Vol. 19, No. 3,
Society for Computer Simulation, February 1988.

[Fujimoto 891 Richard M. Fujimoto, "Time Warp on a Shared Memory
Multiprocessor", Proceedings of the 1989 International
Conference on Parallel Processing, August 1989.

(Fujimoto 901 Richard M. Fujimoto, "Performance of Time Warp under
synthetic workloads", Proceedings of the 1990 SCS
Conference on Distributed Simulation, Volume 22, No. 2,
Society for Computer Simulation, January, 1990.

[Gafni 85] Anat Gafni, "Space Management and Cancellation Mech-
anisms for Time Warp", Ph.D. Dissertation, De1,t. ofComputer Science, University of Southern California, TR-85-341, December 1985.

[Gafni 88] Anat Gafni, "Rollback mechanisms for optimistic
distributed simulation systems", Proceedings of the 1988
SCS Conference on Distributed Simulation, Volume 19,
No. 3, Society for Computer Simulation, February 1988.

3 [Gilmer 88] John Gilmer, "An Assessment of 'Time Warp' Parallel
Discrete Event Simulation Algorithm Performance", Pro-
ceedings of the 1988 SCS Conference on Distributed Simu-
lation, Volume 19, No. 3, Society for Computer Simu-
lation, February 1988.

[Hontalas 89a] Philip Hontalas, Brian Beckman, Mike DiLoreto, Leo
Blume, Peter Reiher, Kathy Sturdevant, L. Van Warren,
John Wedel, Fred Wieland, and David Jefferson, "Per-
formance of the Colliding Pucks Simulation on the Time
Warp Operating System (Part I: Asynchronous behavior
and sectoring)", Proceedings of the 1989 SCS Conference
on Distributed Simulation, Simulation Series Vol 21, No.
2, Society for Computer Simulation, San Diego, 1989.

3 2283l

B

(Hontalas 89b] Philip Hontalas, Brian Beckman, David Jefferson, 'Perfor- P
mance of the Colliding Pucks Simulation on the Time P
Warp Operating System (Part H: Detailed Analysis)", Pro-
ceedings of the SCS Summer Computer Simulation
Conference, Austin, Texas, July 1989.

(Jefferson 82] David Jefferson and Henry Sowizral, "Fast Concurrent
Simulation Using the Time Warp Mechanism, Part I:
Local Control", Rand Note N-1906AF, the Rand Corpor-
ation, Santa Monica, California, Dec. 1982.

(Jefferson 841 David Jefferson and Andrej Witkowski, "An approach to U
performance analysis of timestamp-oriented synchron-
ization mechanisms", ACM Symposium on the Principles
of Distributed Computing, Vancouver, B.C., August 1984.

(Jefferson 85] David Jefferson, "Virtual Time", ACM Transactions on
Programming Languages and Systems, July 1985.

[Jefferson 871 David Jefferson, Brian Beckman, Fred Wieland, Leo U
Blume, Mike DiLoreto, Phil Hontalas, Pierre Laroche,
Kathy Sturdevant, Jack Tupman, Van Warren, John
Wedel, Herb Younger and Steve Bellenot, "Distributed U
Simulation and the Time Warp Operating System", 11th
Symposium on Operating Systems Principles (SOSP),
Austin, Texas, November 1987. I

[Jefferson 90] David Jefferson "Virtual Time II: The Cancelback
Protocol," Proceedings of the Conference on Principles of U
Distributed Computing, 1990.

[Kleinrock 89] Leonard Kleinrock, "On Distributed Systems i
Performance", ITC Specialist Seminar, Paper number 3.2,
Adelaide, 1989. S

[Lakshmi 871 M. S. Lakshmi, "A Study and Analysis of the Performance
of Distributed Simulations", Technical Report 87-32,
Computer Science Department, University of Texas at

Austin, August 1987.

[Lavenberg 831 S. Lavenberg, R. Muntz, and B. Samadi, "Performance and U
Analysis of a Rollback Method for Distributed
Simulation", Performance '83, North Holland, 1983.

2
229 I

eung 89] Edwina Leung, John Cleary, Greg Lomow, Dirk Baezner,
and Brian Unger, "The effect of feedback on the
performance of conservative algorithms", Proceedings of
the 1989 SCS Conference on Distributed Simulation,
Simulation Series Vol 21, No. 2, Society for Computer
Simulation, San Diego, 1989.

89a] Y.-B. Lin and E. D. Lazowska, "Exploiting lookahead in
parallel simulation", Technical Report 89-10-06,
Department of Computer Science and Engineering,
University of Washington, 1989.

I 89b] Y.-B. Lin and E. D. Lazowska, "The optimal checkpoint
interval in Time Warp parallel simulation", Technical
Report 89-09-04, Department of Computer Science andUm Engineering, University of Washington, 1989.

[89c] Y. B. Lin, E. D. Lazowska, J. L. Baer, "Conservative Parallel
3 Simulation For Systems With No Lookahead",TR 89-07-

07, Department of Computer Science and Engineering,5 University of Washington, 1989.

[Lin 90a] Y.-B. Lin, and E. D. Lazowska, "Optimality considerations
for 'Time Warp' parallel simulation", Proceedings of the
1990 SCS Conference on Distributed Simulation, Society
for Computer Simulation, Volume 22, No. 2, San Diego,5 January, 1990.

Lin90b] Y.-B. Lin, E. D. Lazowska, and Jean-Loup Baer,
"Conservative parallel simulation for systems with no
lookahead prediction", Proceedings of the 1990 SCS Con-
ference on Distributed Simulation, Society for Computer3 Simulation, Volume 22, No. 2, San Diego, January, 1990.

on 901 Richard J. Lipton and David W. Mizell, "Time Warp vs.
Chandy-Misra: A worst-case comparison", Proceedings of
the 1990 SCS Conference on Distributed Simulation,
Society for Computer Simulation, Volume 22, No. 2, San
Diego, January, 1990.

t ow 881 Greg Lomow, John Cleary, Brian Unger, and Darrin West,
"A Performance Study of Time.Warp", Proceedings of the
1988 SCS Conference on Distributed Simulation, Volume
19 Number 3, Society for Computer Simulation, San
Diego, February 1988.

52310Us

[Sokol 881 Lisa Sokol, D. P. Briscoe, Alexis P. Wieland, "MTW: a
strategy for scheduling discrete events for concurrent
execution", Proceedings of the 1988 SCS Multiconference I
on Distributed Simulation, Volume 19, No. 3, Society for
Computer Simulation, San Diego, February, 1988. p

[Su 89] Wen-king Su, Chuck Seitz, "Variants of the Chandy-
Misra-Bryant distributed discrete event simulation
algorithm", Proceedings of the 1989 SCS Conference on
Distributed Simulation, Simulation Series Vol 21, No. 2,
Society for Computer Simulation, San Diego, 1989. 3

[West 87] Darrin West, Greg Lomow, Brian W. Unger, "Optimizing
Time Warp Using the Semantics of Abstract Data Types",
Proceedings of the Conference on Simulation and Al,
Simulation Series, Vol 18, No. 3, January 1987.

[West 881 Darrin West, "Optimizing Time Warp: Lazy Rollback and
Lazy Reevaluation", M.S. Thesis, Dept. of Computer Sci-
ence, University of Calgary, January 1988.

[Wieland 89] Fred Wieland; Lawrence Hawley, Abraham Feinberg,
Michael DiLoreto, Leo Bioom, Joseph Ruffles, Peter S
Reiher, Brian Beckman, Phil Hontalas, Steve Bellenot,
and David Jefferson, "The Performance of Distributed
Combat Simulation with the Time Warp Operating Sys- 3
tem", Concurrency Practice and Experience, Vol. 1, No. 1,

Sept. 1989.

[Wieland 92] Fred Wieland, Tapas Som, Peter Reiher, John Wedel, and
David Jefferson, "A Critical Path Tool for Parallel
Simulation Performance Evaluation," Hawaii
International Conference on System Science, Koloa,
Hawaii, January 1992.

I

i

232

Index
Benchmarks 161-163, 165-180

I Cancelback 61, 66
Commitment 41, 47-50, 55, 60, 90, 125, 128

Critical Path Code 108-110
Dynamic Object Creation 100
Statistics 137

Configuration File 123, 127, 131
Context Switching 19, 27, 57, 58, 209-211
Critical Path Computation 48, 107-112
Debugging 147-151

Flow Log 149-150
Message Log 150
Migration Log 150-151
Monitor 147-149

Determinism 23, 56
Dynamic Load Management 67-71
Dynamic Memory 48, 51-60, 61

Allocation 54-57
Commitment 60
Deallocation 59
Deferred Memory Segments 49, 53-54, 58, 86

Migration 88-89
Dynamic Table Sizing 55-56
Limitations 55

I Migration 87
Dynamic Object Creation 31, 49, 61, 97-99, 101, 115

Multiple Creations of the Same Object 99, 100
Dynamic Object Destruction 49, 97, 99, 101, 102
Effective Utilization 30, 673 EPT (see Event Processing Time)
Event Logging 48, 125-126

"E Event Processing Time 107, 108-111
Events 134

Cancellation 193-203
Overhead 183, 184
Prediction 204, 208
Scheduling 25-28

I Global Virtual Time 41-46, 47, 103, 104, 105, 117, 131, 133
Data Collection Protocol 41-45, 67
Phase Location 45
State Migration 89

GVT (See Global Virtual Time)

233B

U
collapse 189-191

VralTmProcess Migration By Virtual Time 82, 84-92!

U
I
U
U
8
U
I
I
I
I
3
I
I
3

236 U

